

## DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

| General information                                                                                           |                                                                                                  |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Academic subject                                                                                              | Optoelectronics and Nanotechnologies                                                             |
| Degree course                                                                                                 | Physics                                                                                          |
| Academic Year                                                                                                 | 1st                                                                                              |
| European Credit Transfer and Accumula                                                                         | ation System (ECTS) 6                                                                            |
| Language                                                                                                      | English                                                                                          |
| Academic calendar (starting and ending date) 2 <sup>nd</sup> semester, first week of March – Last week of May |                                                                                                  |
| Attendance                                                                                                    | Attending the lectures is strongly recommended. Attending the laboratory sessions is compulsory. |

| Professor/ Lecturer             |                                                                 |
|---------------------------------|-----------------------------------------------------------------|
| Name and Surname                | Gaetano Scamarcio                                               |
| E-mail                          | gaetano.scamarcio@uniba.it                                      |
| Telephone                       | 080 544 3234                                                    |
| Department and address          | Dipartimento Interateneo di Fisica, room 224                    |
| Virtual headquarters (Microsoft |                                                                 |
| Teams code)                     |                                                                 |
| Tutoring (time and day)         | The students are invited to send an e-mail to arrange a meeting |

| Syllabus             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Learning Objectives  | The objective of the course is to provide the basis for understanding the main<br>physical properties of optoelectronic devices. An important goal is the<br>understanding of relevant structural, electronic and optical properties of III-V<br>semiconductors and how to design and modify such properties using<br>heterostructures and quantum well structures to achieve specific device<br>functionalities. Special attention will be posed to assess the figures of merit and<br>the physical limits of various approaches for the design and fabrication of<br>advanced optoelectronic devices. A relevant objective is also the hands-on<br>learning of advanced experimental techniques for the fabrication and<br>characterization of materials and devices using research-grade instrumentation<br>such as clean-room facilities, atomic force microscopy (AFM), scanning electron<br>microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and microprobe<br>Raman scattering.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Course prerequisites | Background knowledge of solid state physics, quantum physics, statistical physics<br>at the level of bachelor degree in physics. Basic knowledge of condensed matter<br>physics and laser physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Contents             | Critical review of structural, electronic and optical properties of relevant III-V<br>semiconductors (GaAs, AlxGa1-xAs, In1-xGaxAsyP1-y, InP, GaN). Principles of<br>bandgap engineering using quantum heterostructures. Inter-band and inter-<br>subband transistions.<br>Laboratory activity: micro-probe Raman and FTIR characterization of materials<br>and heteroctructures for optoelectronics.<br>Light emitting diodes (LEDs). Criteria for the choice of materials. Internal quantum<br>efficiency. Spontaneous emission rates as a function of the injection regime.<br>External efficiency. Heterojunction LEDs. L-I-V characteristics. Thermal effects.<br>Temporal response.<br>Semiconductor lasers. Stimulated emission in semiconductor structures. Optical<br>gain. Conditions for population inversion. Double heterojunction laser diodes<br>(LDs). Influence of electrical pumping on the dielectric function of a<br>semiconductor active medium. Laser threshold. Current threshold. L-I-V<br>characteristics. External efficiency. Spectral characteristics. Optical modes of a LD.<br>Solution of the Helmholtz equation in the effective index approximation. Gain<br>guiding and index guiding cavities. Single-mode LDs for telecommunications.<br>Distributed feedback lasers. Quantum well lasers. Influence of Auger effect on the<br>long wavelength limits of LEDs and LDs. Quantum cascade lasers (QCLs).<br>Photolithography and nanotechnologies for the fabrication of optoelectronic<br>devices in clean room. |



## DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

|                        | Laboratory activity: e-beam thin-film deposition and characterization.<br>Semiconductor photodetectors. Quantum efficiency and detectivity. Photodiodes.<br>Photoconductors. p-i-n photodiodes. Criteria for the choice of materials.<br>Avalanche photodiodes. Quantum well IP. |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | Basic telecom systems. Wavelength and frequency division multiplexing. Classes<br>of optical fibers. Modal dispersion. Index dispersion.                                                                                                                                         |
| Books and bibliography | <ul> <li>J. Singh, "Semiconductor optoelectronics", Mc Graw Hill, 1995.</li> <li>G. P. Agrawal, N. K. Dutta, "Semiconductor lasers", Van Nostrand Rehinhold, 1993.</li> <li>J. Faist, "Quantum Cascade Lasers", Oxford University Press, 2013.</li> </ul>                        |
| Additional materials   | Lecture notes. Laboratory setups manuals                                                                                                                                                                                                                                         |

| Work schedule |          |                                                              |                                               |
|---------------|----------|--------------------------------------------------------------|-----------------------------------------------|
| Total         | Lectures | Hands on (Laboratory, working groups, seminars, field trips) | Out-of-class study hours/<br>Self-study hours |
| Hours         |          |                                                              |                                               |
| 150           | 40       | 15 (laboratory)                                              | 95                                            |
| ECTS          | ECTS     |                                                              |                                               |
| 6             | 5        | 1                                                            |                                               |

| Teaching strategy |                                                                             |
|-------------------|-----------------------------------------------------------------------------|
|                   | Lectures in the teaching room with the aid of a laptop and a projector or a |
|                   | blackboard. Laboratory activities supervised in research grade setups.      |

| Expected learning outcomes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Knowledge and understanding on:             | <ul> <li>basic and advanced aspects of optoelectronic device physics</li> <li>proper choice of materials and structures for the realization of optoelectronic devices</li> <li>proper choice of optoelectronic devices for applications</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Applying knowledge and<br>understanding on: | • the essential description and the assessment of physical limits of phenomena involving radiation-matter interaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Soft skills                                 | <ul> <li>Making informed judgments and choices         <ul> <li>ability to describe and quantitatively model relevant structural, vibrational, optical and surface properties of relevant semiconductors.</li> <li>ability to choose suitable experimental methods to fabricate and characterize optoelectronic devices</li> </ul> </li> <li>Communicating knowledge and understanding         <ul> <li>communication skills in English;</li> <li>skills in the exposition of physical properties and characteristics of optoelectronic devices using appropriate scientific language</li> </ul> </li> <li>Capacities to continue learning         <ul> <li>ability to learn and to transfer the design of the optical properties of semiconductor structures and experimental methods for their assessment</li> </ul> </li> </ul> |

| Assessment and feedback |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methods of assessment   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Evaluation criteria     | <ul> <li>Knowledge and understanding         <ul> <li>basic principles of different classes of optoelectronic devices and related figures of merit.</li> <li>experimental methods to study the properties of heterostructures.</li> <li>successful models describing the optoelectronic devices.</li> </ul> </li> <li>Applying knowledge and understanding         <ul> <li>capability to discuss the development of efficient optoelectronic devices with desired functionalities based on the physical properties of relevant material structures, design and fabrication strategies.</li> </ul> </li> <li>Autonomy of judgment</li> </ul> |



## DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

|                                                           | <ul> <li>Master physics and scientific communication</li> <li>Communication skills         <ul> <li>Capability of support statements with relevant examples, and demonstrate understanding</li> </ul> </li> <li>Capacities to continue learning         <ul> <li>Capability to exploit the achieved knowledge and concepts to further studying advanced physical and technological topics</li> </ul> </li> </ul> |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria for assessment and attribution of the final mark | Oral exam (75%). Laboratory report (25%).                                                                                                                                                                                                                                                                                                                                                                        |
| Additional information                                    |                                                                                                                                                                                                                                                                                                                                                                                                                  |