

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

General information	
Academic subject	Rare Events Physics in Underground Laboratories
Degree course	Physics
Academic Year	2022/20233
European Credit Transfer and Accumulation System (ECTS)	
Language	English
Academic calendar (starting and ending date) 2nd semester	
Attendance	Not compulsory

Professor/ Lecturer	
Name and Surname	Giovanni Francesco Ciani
E-mail	Giovanni.ciani@uniba.it
Telephone	
Department and address	Phisics
Virtual headquarters (Microsoft	
Teams code)	
Tutoring (time and day)	To be defined with the teacher

Syllabus	
Learning Objectives	Main features of Rare events physics and background reduction techinques
Course prerequisites	Particle detector, nuclear and particle physics
Contents	In order to go beyond the standard model and to explore new frontiers (Direct dark matter research, double beta decay neutrinoless, nuclear physics in region of interest of stellar evolution), it is mandatory to measure tiny signals with a extremely low event rate. In this course the contribution on Physics in Underground Laboratories all over the world (and mainly in Laboratori Nazionali del Gran Sasso) will be explained
Books and bibliography	Papers and review manuscripts; slides
Additional materials	slides

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
75	18	13	44
ECTS			
3	2	1	

Teaching strategy	
	Lessons with proposal and discussion of cases of study. Guided
	analysis of made-available tables.

Expected learning outcomes	
	Underground Laboratories all over the world.
	Background reduction in Underground Labooratories
	Direct dark matter research and various experimental techniques used in
	Underground Laboratories (dual-phase argon Time Projection Chamber,
	cryogenic scintillators)
Knowledge and understanding on:	Double beta decay neutrinoless: basic theoretical aspects and
	experimental techiniques used in Underground Laboratories (HPGe
	detectors, Bolometric Scintillators)
	Nuclear Astrophysics in Underground Laboratories
	 Data Analysis Tools in Rare Events Physics (Pulse Shape Discrimination,
	Feldman Cousin Approach,)

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

Applying knowledge and understanding on:	Rare events physics and background reduction techinques
Soft skills	Knowledge and understanding: Main branch of Rare event physics (Dark matter research, double beta decay neutrinoless, nuclear astrophysics) and importance of measurements in underground laboratories. Applied knowledge and understanding: The student is able to extract useful information about study of rare event and how crucial is to install experiment in underground laboratories. Judging autonomy: Students are encouraged to deepen each argument reading focused manusctrpt
	Communicative Skills: Preparation, exposure and discussion of a presentation
	Learning Skills: Know how to extract operational information for case studies from formal texts and manuscripts.

Assessment and feedback	
Methods of assessment	Presentation and discussion on the argument chosen
Evaluation criteria	knows the basic principles of Rare event Physics
	knows the main source of natural background and how reduce it
	• knows the main technique to measure Rare Events in Physics
	knows how to realize a presentation.
	o knows how to present the results of a structural analysis
	in written and oral forms;
Criteria for assessment and attribution	Results of the final presentation (50%), presentation and discussion
of the final mark	(50%)
Additional information	