

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

General information		
Academic subject	Physics Applications of Group Theory	
Degree course	Physics	
Academic Year	1	
European Credit Transfer and Accumulation System (ECTS) 3		
Language	English	
Academic calendar (starting and ending	date) First week of October - Third week of December	
Attendance	Preferred, Not compulsory	

Professor/ Lecturer	
Name and Surname	Antonio Marrone
E-mail	antonio.marrone@uniba.it
Telephone	+39 080 5443463
Department and address	Campus Universitario via Amendola 173 - 70125 Bari
Virtual headquarters (Microsoft Teams code)	
Tutoring (time and day)	On request

Syllabus	
Learning Objectives	Understanding the concept of symmetry in physics
Course prerequisites	Basic Pysics and Mathematics knowledge
	Introduction to Symmetry in Physics; Groups and Representations
	Definitions and examples
	Group of Permutations Sn
	General properties of groups
	Conjugation classes
	Subgroups. Normal subgroups. Homomorphisms.
	Group representations
	Schur Lemmas. Orthogonality theorem. Characters. Character table. Direct product
Contents	and decomposition
contents	Symmetric group Sn and its representations. Young tableaux. Irreps of SU(N) and
	Sn. Tensorial method.
	Lie groups.
	SO(2),SO(3) and SU(2).
	SU(N)
	Young tableaux.
	Lie Algebras
	Simple Lie Algebras. Killing form. Root quantization. Dynkin diagrams. Weights
	and representations.
	H.F. Jones, Groups, Representations and Physics, Taylor & Francis; 2 edition
Books and bibliography	H. Georgi, Lie Algebras In Particle Physics: from Isospin To Unified Theories
	(Frontiers in Physics), Westview Press; 2 edition (October 22, 1999)
	F. Stancu, Group Theory in Subnuclear Physics, Oxford Studies in Nuclear Physics
Additional materials	Sone notes from the teacher

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
		31	62
ECTS			
		3	

Teaching strategy	
	Lessons on the blackboard

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

Expected learning outcomes	
Knowledge and understanding on:	Understanding the concept of symmetry in physics
Applying knowledge and understanding on:	Implementation of a symmetry in physical models
Soft skills	Making informed judgments and choices Ability to proceed autonomously in the study of physical symmetries
	Communicating knowledge and understanding
	 Ability to express the acquired knowledge properly Capacities to continue learning
	Ability to study independently from texts and scientific literature

Assessment and feedback	
Methods of assessment	Oral test (100%)
Evaluation criteria	Adequate comprehension and global knowledge of concepts and arguments described throughout the course.
Criteria for assessment and attribution of the final mark	
Additional information	