

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

General information		
Academic subject	Quantum Technologies	
Degree course	Physics	
Academic Year	2022-23	
European Credit Transfer and Accumulation System (ECTS) 6		
Language	English	
Academic calendar (starting and ending date) 01 March 2023 – 31 May 2023		
Attendance	Not mandatory	

Professor/ Lecturer	
Name and Surname	Francesco Vincenzo Pepe
E-mail	francesco.pepe@ba.infn.it
Telephone	080 5442361
Department and address	Dipartimento Interateneo di Fisica, Via Amendola 173, 70126 Bari (BA)
Virtual headquarters (Microsoft	
Teams code)	
Tutoring (time and day)	Tue-Wed-Thu, 11:00-13:00

Syllabus		
	Acquire knowledge of the principles of quantum mechanics and how they are	
Learning Objectives	applied to the development of novel technologies. Gain an overview of the	
	diversified technological applications of quantum mechanics. Identify and	
	distinguish technological challenges and fundamental physical limits.	
Course prerequisites	Quantum Mechanics, Mathematical Methods for Physics	
	Introduction. The quantum advantage in different technological fields.	
	Classical and quantum communication. Motivation: polynomial and exponential	
	scaling. Elements of classical computation: circuit model, relation between energy	
	and information. Quantum bits and quantum elementary circuits. Quantum	
	algorithms: search in an unstructured database, Quantum Fourier Transform,	
	period finding and factorization.	
	Quantum entanglement. Pure and mixed states: from the wavefunction to the	
	density matrix. Factorized and entangled states. Entanglement measures.	
Contents	Quantum communication. No cloning theorem. Dense coding and quantum	
	teleportation.	
	Quantum computers. General principles. Hamiltonian implementation of	
	quantum logical operators (gates). Unitary errors. Sources of decoherence.	
	Experimental platform for quantum technology implementation: cavity quantum	
	electrodynamics, trapped ions, quantum dots, superconducting qubits. Hybrid	
	quantum-classical algorithms.	
	Quantum simulators of many-body systems. The need for a quantum simulator.	
	Implementation of physical constraints. First experimental realizations.	
	G. Benenti, G. Casati, D. Rossini, G. Strini, Principles of quantum computation and	
Books and bibliography	information (World Scientific, 2019).	
	M. A. Nielsen and I. L Chuang, Quantum computation and quantum information	
	(Cambridge University Press, 2010).	
	M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold atoms in optical lattices.	
	Simulating quantum many-body systems (Oxford University Press, 2012).	
Additional materials		

Work schedule			
Total	Lectures	Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours			
150	40	15	95
ECTS			
6	1,6	0,6	3,8

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

Teaching strategy

Expected learning outcomes			
Knowledge and understanding on:	 Acquire critical thinking, analytical ability, problem-solving Understand the potential of the different quantum technologies and focus on their possible applications Compare different technological implementations and find their strengths and bottlenecks 		
Applying knowledge and understanding on:	 Define objectives, benchmarks, learning targets and standards Apply the methods of theoretical physics to applications Become aware of theoretical tools of investigation and technological implementations Stimulate and direct collaborative learning and individual understanding 		
Soft skills	 Stimulate and direct collaborative learning and individual understanding Making informed judgments and choices Judge the value of acquired knowledge. Establish evaluation criteria ar standards, both quantitative and qualitative Compare, contrast, distinguish, describe novel technologies and th underlying physical phenomena Communicating knowledge and understanding Grasp communication accurately, become able to adopt different forms presentation Master physics and science communication Make examples that are not misleading and foster scientific understanding Capacities to continue learning Summarize the acquired knowledge and identify central meaning ar crucial points Continuously update scientific knowledge. 		

Oral examination (100 %)	
 Knowledge and understanding Knowledge of the principles of quantum mechanics and their application to quantum technologies Applying knowledge and understanding Understanding of the physical processes that make a natural or artificial system a good candidate for a quantum computer Understanding of the advantages entailed by using and developing quantum technologies Autonomy of judgment Compare, contrast, distinguish, describe novel technologies and the underlying physical phenomena Communicating knowledge and understanding Master physics and science communication Communication skills Make accurate and not misleading examples, that foster scientific understanding Capacities to continue learning Summarize the acquired knowledge and identify central meaning and crucial points 	
Verify 1) the accuracy of knowledge and presentation of the principles of quantum mechanics and of their application to quantum technologies; 2) the ability to describe and compare quantum technologies, identifying the underlying physical phenomena.	

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA