

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

General information	
Academic subject	Solid State Physics
Degree course	Physics
Academic Year	2022-2023
European Credit Transfer and Accumulation System (ECTS) 6	
Language	English
Academic calendar (starting and ending date) From March 2023 to June 2023	
Attendance	No

Professor/ Lecturer	
Name and Surname	Pietro Patimisco
E-mail	pietro.patimisco@uniba.it
Telephone	+39 0805442368
Department and address	Physics Department, via Amendola 173
Virtual headquarters (Microsoft	
Teams code)	
Tutoring (time and day)	Monday, 15:00 – 17:00; Wednesday, 16:00 – 18:00

Syllabus	
Learning Objectives	Crystal Structure. Reciprocal Lattice. Band Structures. Semiconductor Structures. Thermo-electric Transport. Low Dimensional Systems.
Course prerequisites	Background knowledge on quantum mechanics, statistical physics and semiconductor physics.
Contents	 Crystal Structure. Periodic Array of Atoms. Lattice Translation Vectors. Primitive Lattice Cell. Fundamental Types of Lattices. Two-Dimensional Lattice Types. Three-Dimensional Lattice Types. Index Systems for Crystal Planes and Directions. Simple Crystal Structures. Sodium Chloride Structures. Cesium Chloride Structures. Diamond Structure. Zinc Blende Structure. Problems. Reciprocal Lattice. The Bragg Diffraction Law. Reciprocal Lattice. Fourier Analysis of Scattered Wave. Reciprocal Lattice Vectors. Diffraction Conditions. Laue Equations. Brillouin Zones. Reciprocal Lattice to Cubic Lattice. Reciprocal Lattice to Face-Centered Cubic Lattice. Reciprocal Lattice to Body-Centered Cubic Lattice. Structure Factor of Body-Centered Cubic Lattice. Structure Factor of Face-Centered Cubic Lattice. Structure Factor of Face-Centered Cubic Lattice. Structure Factor of Face-Centered Cubic Lattice. Nonel. Fermi Sphere. Density of States. Fermi Distribution Non-Interacting Electrons in a Periodic Potential. Definition of Periodic Potential. Bloch Theorem. Band Index. Fermi Surface. Kronig-Penney Model. Energy Bands in 1D lattice. Nearly Free Electrons in a Weak Periodic Potential. General Approach to Schrodinger Equation. Energy Levels near a single Bragg Plane. Energy Bands in a 1D lattice. Tight-Binding Model. General Approach. Energy Bands in a 1D Lattice. Energy Bands in a Body-Centered Cubic Lattice. Energy Bands in a Face-Centered Cubic Lattice. Orthogonalized Plane-Wave. Pseudopotential. Semiconductor Structures. Introduction. Silicon, Germanium and Gallium Arsenide. Covalent Bonding. Crystal Structure. Energy Bands. Band Gap. Motion of Electron Wave in an Energy band. Semiclassical Equations of Motion. Dynamical Effective Mass. Parabolic Approximation. Carrier Concentration at Thermal Equilibrium. Intrinsic Semiconductor. Donors and Acceptors. Extrinsic Carriers Concentration. Problems.
	Thermal Transport. Isothermal Electrical Conductivity. Thermo-electric Transport.

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

	Thermal Conductivity.
	Low Dimensional Systems. Introduction. 2D Quantum Heterostructures. Finite Quantum Well. Quantized Energy Levels. Density of States. Influence of Effective Mass. 2D Graphene. Crystal Structure. Brillouin Zones. Energy Bands. Density of States. Quantum Wire. Energy Bands. Density of States. GaAs Nanowire: Subbands and Probability Density. Quantum dot. Density of States. Energy Levels in Spherical Potential Well. Thermal vs Nonthermal Distribution. Population Statistics: Rate Equations vs Random Population. Phosphorene and Black Phosphorus. Crystal Structure. Primitive Cell and Brillouin Zone. Energy Bands and Density of States. Field-Effect Transistors. Photodetectors.
Books and bibliography	N. W. Ashcroft and N. D. Mermin – Solid State Physics, Cencage. C. Kittel – Introduction to Solid State Physics, John Wiley & Sons Inc. S. M. Sze – Physics of Semiconductor Devices, Wiley-Interscience.
Additional materials	Lecture notes at the website: <u>http://polysense.poliba.it/index.php/solid-state-physics/</u>

Work schedule			
Total Lectures	loctures	Hands on (Laboratory, working groups, seminars,	Out-of-class study hours/
	field trips)	Self-study hours	
Hours			
	40	15	95
ECTS			
	5	1	

Teaching strategy	
	Lectures in the teaching room with the aid of a laptop and a projector.

Expected learning outcomes	
Knowledge and understanding on:	 crystal structure, electronic and thermal properties of solid-state systems,
	\circ basic properties of metals, insulators, and semiconductors,
	\circ semiconducting elements for the use in electronic devices,
	 low-dimensional semiconductors.
	\circ capability to apply quantum mechanics,
Applying knowledge and	\circ theoretical and numerical calculations in solid state physics,
understanding on:	\circ solve simple problems concerning different properties that result from the
	distribution of electrons and regular arrangement of atoms in crystals.
	Making informed judgments and choices
	\circ Autonomy in the evaluation of descriptions about theoretical models on
	electronic properties of materials,
	\circ Ability to critically analyse the current research literature.
	Communicating knowledge and understanding
	\circ Enable transition from theoretical physical subjects towards the
Soft skills	understanding of basic properties of solid-state matter and their
SOIL SKIIIS	technological applications,
	\circ Discuss models and mechanics introduced in the course.
	Capacities to continue learning
	 Follow the current progress and further prospects within the areas of solid- state physics,
	\circ Assess the reliability of simple theoretically based relevant problems
	published in literature and technological documentation

Assessment and feedback	
Methods of assessment	
Evaluation criteria	Capability to discuss models and mechanics introduced in the course. Adequate

DIPARTIMENTO INTERUNIVERSITARIO DI FISICA

	comprehension and global knowledge of concepts and arguments described throughout the course.
Criteria for assessment and attribution of the final mark	Oral exam (100%)
Additional information	