

Dipartimento Interateneo di Fisica "Michelangelo Merlin"

General information			
Academic subject	LABORATORY OF DATA ACQUISITION TECHNOLOGIES		
Degree course	PHYSICS		
Academic Year	2021-2022		
European Credit Transfer and Accumulation System (ECTS) 6			
Language	ENGLISH		
Academic calendar (starting and	ending date) 1 st semester (September – December)		
Attendance			

Professor/ Lecturer	
Name and Surname	Marilisa De Serio / Saverio Simone
E-mail	Marilisa.Deserio@uniba.it / Saverio.Simone@uniba.it
Telephone	+390805443182 / +390805443193
Department and address	Dipartimento Interateneo di Fisica M. Merlin, office 117 / office 115
Virtual headquarters	Microsoft Teams code: pk3cvkw
Tutoring (time and day)	Students are invited to send an e-mail to arrange individual or group meetings.

Syllabus	
Learning Objectives	The course is intended to introduce the basic concepts of data-acquisition systems
	used in modern physics experiments focussing on the development of high-level
	software to control external devices/sensors interfaced to the PC.
Course prerequisites	Basic knowledge of electronics. Basic knowledge of computer programming.
Contents	Introduction to modern data acquisition systems and applications.
	Computer architecture: processor, cache memory and main memory, mother board, buses, I/O devices.
	Interconnection structures: characteristics of buses (type, width, arbitration,
	timing, data transfer modes), bus interconnection, multiple bus hierarchies.
	I/O modules. I/O techniques: programmed I/O, interrupt-driven I/O, Direct Memory Access.
	Interfacing external devices to the PC with I/O modules. PCI and PCI-X buses, USB, PCI Express bus.
	Sensors.
	Analog to digital interface: sampling of analog signals, aliasing and quantization; Sample and Hold; Analog to Digital Conversion (ADC): counter type ADC, successive approximation ADC, flash ADC; Digital to Analog Conversion (DAC): binary- weighted resistor DAC.
	Readout electronics for signal detection: signal conditioning (amplification, shaping), pedestal subtraction; FPGA-based signal processing: data timestamping, zero-suppression. Trigger.
	Ethernet-based data acquisition: transmission protocols; client – server architecture; Ethernet-based distributed data acquisition systems.

Dipartimento Interateneo di Fisica "Michelangelo Merlin"

	 Laboratory exercises: Part 1. Introduction to programming. Fundamentals of C language: Handling binary data, bitwise operators. Introduction to the ROOT framework for data representation and analysis. Part 2. Use of data acquisition boards with PCI interface (National Instruments PCI-6503, PCI-62212). Temperature monitoring using a sensor connected to an 8-bit ADC. Sampling and reconstruction of a sinusoidal signal. Triggered acquisition of pulsed signals.
	 Ethernet-based data acquisition, client – server architecture. Detector calibration using FPGA-based readout electronics.
Books and bibliography	 W. Stalling, Computer organization and architecture, Pearson Edition (Ch. 3 – 7, Ch. 4 – 5 - 6) S. Derenzo, Practical Interfacing in the Laboratory, Cambridge Edition (Ch. 1, Ch. 3, Par. 5.8.1) W. Kernighan and D. Ritchie, The C programming language, Prentice Hall Edition http://root.cern.ch/
Additional materials	Lecture slides. Additional material on specific topics provided during the course.

Work schedule				
Total	Lectures		Hands on (Laboratory, working groups, seminars, field trips)	Out-of-class study hours/ Self-study hours
Hours				
150	24		45	81
ECTS				
6	3		3	
Teaching strategy				
		Lectures	(with slides). Laboratory exercises in small groups.	
Expected learning outcomes				
Knowledge and understanding:			nderstanding of basic concepts of modern dig systems.	gital data-acquisition
			nowledge of hardware and software tools for c acquisition. nowledge of software frameworks for data represent	
Applying knowled understanding:	dge and	 Ability to use data acquisition I/O devices. Ability to develop high-level software for data-acquisition using computer- 		

Dipartimento Interateneo di Fisica "Michelangelo Merlin"

	controlled electronic devices. Ability to use software frameworks for data representation and a 	nalysis.
Soft skills	 Making informed judgments and choices Ability to work in a laboratory. Ability to identify adequate hardware and software solutions f problems/applications. 	or specific
	 Communicating knowledge and understanding Ability to use adequate technical language. Teamwork skills. Capacities to continue learning 	
	 Ability to consult bibliographic/technical material in Italian or Eng 	lish.

Assessment and feedback	
Methods of assessment	Laboratory reports. Practical exam to assess laboratory skills. Oral exam.
Evaluation criteria	The student knows
	$\circ~$ the basic concepts of modern digital data-acquisition systems;
	 the most commonly used I/O techniques for computer-controlled data acquisition;
	\circ how to apply I/O techniques;
	 how to implement I/O techniques and develop simple C applications to interface external devices/sensors to the PC;
	 how to write a laboratory report.
	The student is able to consult technical documentation and communicates effectively using adequate technical language.
Criteria for assessment and	Laboratory reports (10%). Practical exam (40%). Oral exam (50%).
attribution of the final mark	
Additional information	