Basic/Essential Course Information		
Course title	Laboratory of Photonics	
Degree Course title	Physics	
ECTS	6	
Compulsory attendance	No	
Course teaching language	English	

Teacher	Maurizio Dabbicco	maurizio.dabbicco@uniba.it

ECTS Details	Disciplinary area	SSD	ECTS
	Characterizing	FIS/03	6

Course schedule	Period	Year	lesson type
	2 nd semester	lst	Lessons (32h) Lab (30h)

Time management	Total hours	in-class/in-lab	out-of-class study hours
	150	62	88

Course calendar	Starting date	Ending date
	First week of March	Last week of May

Syllabus	
Objectives	Skills in laser beams characterization and management, both on theoretical and practical basis. Knowledge of light propagation issues in free-space and confined structures.
Prerequisites	Electromagnetism and waves, ray optics, bases of crystal symmetry and electronic energy levels in atomic, molecular and condensed matter, laser fundamentals, differential calculus and complex functions
Expected learning outcomes	 Knowledge and understanding The properties of Gaussian beam and the way to characterize it. Statistical properties of light. Materials' design tools for tailoring optical properties. Knowledge and comprehension skills applied How to measure laser beam physical parameters. How to modify laser beam physical parameters. How to calculate propagation of laser beams in linear optical materials. Autonomy of judgment Criteria for choosing optical materials and components. Criteria for choosing instrumentation for light beams characterization. Communication skills Writing extended laboratory reports. Preparing and presenting tutorial-type presentations. Ability to learn Critical review of laboratory results.
Course contents – summary	Optical materials. Principles and instrumentation for beam characterization and shaping. Beam propagation methods.
Course content – detailed	Lectures - Linear photonics: optical materials (glasses, molecular crystals, dielectrics, semiconductors, metamaterials), optical components (lenses, lens systems,

	 mirrors, coatings, polarization optics, modulators), optical propagation in free- space and in transparent media (matrix optics, beam optics, Fourier optics). Integrated photonics: resonators, wave guide modes, photonic crystals, basic components of optical circuits. Coherent photonics: statistical models of light, classical interference, optical feedback interferometry. Laboratory practice - Laser Beam characterization and shaping.
	Interference and diffraction.
Course content – textbooks	Saleh, Teich, Fundamentals of Photonics, Wiley. Hecht, Optics, Addison-Wesley. Donati, Electro-Optical Instrumentation, Prentice Hall PRT.
Notes	Selected chapters
Teaching methods	Lectures in the teaching room with the aid of a laptop and a projector. Laboratory activity supervised.
Assessment % of final mark	Mid-term test (20%), Lab reports (30%), Final project (50%)
Evaluation criteria	 Knowledge and understanding Minimum: the properties of Gaussian beam and the way to characterize it, classification and usage of optical materials. Intermediate: materials' design tools for tailoring optical properties. Optimal: maths of wave propagation in transparent media. Knowledge and comprehension skills applied Minimum: critical analysis and accurate presentation of laboratory activity Intermediate: comprehensive review of state-of-art Optimal: comparison of experimental data with numerical simulations Autonomy of judgment Minimum: correct estimation of experimental uncertainties. Intermediate: motivated choice of materials and components for the purpose. Optimal: identification of the optimal setup for a given measurement. Communication skills Minimum: compliance with timing and template of reports and presentation. Intermediate: cogency of argumentation. Optimal: skillful presentation of state-of-art and perspective studies.