Principali informazioni sull'insegnamento		
Denominazione	STANDARD MODEL	
dell'insegnamento		
Corso di studio	PHYSICS	
Anno di corso	Secondo Magistrale	
Crediti formativi universitari (CFU) / European Credit Transfer and Accumulation System (ECTS): 6		6
SSD	FIS/02	
Lingua di erogazione	Inglese	
Periodo di erogazione	Primo semestre (Settembre – Dicembre 2021)	
Obbligo di frequenza	No	

Docente		
Nome e cognome	Fulvia De Fazio	
Indirizzo mail	Fulvia.defazio@ba.infn.it	
Telefono	0805443209	
Sede	Studio RO1 – Dipartimento Interateneo di Fisica – Campus Universitario – Via E. Orabona, 4 Bari	
Sede virtuale	Aula Virtuale Standard Model su MS Teams	
Ricevimento (giorni, orari e	Ogni martedì, 15:00 – 17:00 nello studio o nell'aula virtuale	
modalità)	In altri giorni ed orari previo appuntamento da concordare tramite e-mail	

Syllabus	
Obiettivi formativi	L'obiettivo dell'insegnamento è quello di fornire - le conoscenze fondamentali sul Modello Standard delle interazioni forti ed elettrodeboli; - lo strumento per calcolare le regole di Feynman in qualunque teoria di gauge - la metodologia per la rinormalizzazione e le tecniche legate al gruppo di rinormalizzazione. Il corso mira, inoltre, ad introdurre gli sviluppi più moderni nel campo della fisica teorica delle particelle elementari.
Prerequisiti	Conoscenza della meccanica quantistica e dei metodi matematici per la Fisica.
Contenuti di insegnamento (Programma)	1. Invarianza di Gauge: Elementi di Teoria dei Gruppi; Principio di Gauge; Teorie di Yang-Mills. 2. Campi classici, simmetrie e rotture di simmetrie: L'azione, le equazioni del moto, leggi di conservazione, teorema di Noether. 3. Regole di Feynman: Matrice S e funzioni di Green; Integrale funzionale di Feynman; derivazione delle regole di Feynman. 4. Rinormalizzazione e Gruppo di rinormalizzazione: Regolarizzazione; Classificazione delle divergenze; Metodo sistematico di rinormalizzazione; Equazioni del Gruppo di rinormalizzazione; Funzione Beta in QED e QCD. 5. Cromodinamica Quantistica: La densita' di Lagrangiana di QCD; la Lagrangiana di Fadeev-Popov; La simmetria BRST; Operator Product Expansion; Anomalie di gauge 6. Il Modello Standard Il Gruppo di gauge delle interazioni elettrodeboli; Il meccanismo di Higgs e la rottura spontanea della simmetria; La matrice di Cabibbo Kobayashi Maskawa;

	La violazione di C. 7. Teorie efficaci: Fisica del sapore e Hamiltoniani effettivi.
Testi di riferimento	O. Nachtmann: Elementary Particle Physics. Concepts and Phenomena. Springer 1990
	T. Muta: Foundations of Quantum Chromodynamics World Scienti_c 2nd Ed. 1997 M. Peskin and R. Schroeder: Introduction to Quantum Field Theory A.J. Buras: Gauge Theory of Weak Decays.Cambridge University Press 2020.
Note ai testi di riferimento	

Organizzazion	ne della didattica		
Ore			
Totali	Didattica frontale	Pratica (laboratorio, campo, esercitazione, altro)	Studio individuale
140	48	12	85
CFU/ETCS			
6	6		

Metodi didattici	
	Lezioni frontali in aula.
	Se necessario le lezioni saranno erogate in modalità online.

Risultati di apprendimento previsti		
Conoscenza e capacità di comprensione	Il corso si propone di fornire agli studenti le idee moderne sui costituenti elementari della materia e sulle loro interazioni fondamentali. Verranno trattati i principi di base della teoria quantistica dei campi. Verranno fornite le basi teoriche fondamentali, insieme ai più recenti sviluppi e prospettive.	
Conoscenza e capacità di comprensione applicate	Verranno sviluppate le competenze per la risoluzione dei problemi di Fisica Teorica delle interazioni fondammentali. Una parte consistente del corso sarà dedicata alla risoluzione di esercizi.	
Competenze trasversali	 Autonomia di giudizio Lo studente acquisirà la capacità autonoma di affrontare problemi nelle teorie di campo. Abilità comunicative Lo studente apprenderà il linguaggio proprio e moderno della fisica delle particelle elementari. Capacità di apprendere in modo autonomo Lo studente acquisirà gli strumenti di base nonché i più moderni approcci allo studio dei processi che coinvolgono le particelle elementari. 	

Valutazione		
Modalità di verifica	Esame orale	
dell'apprendimento	Per partecipare alla prova orale è indispensabile la prenotazione su ESSE3.	
Criteri di valutazione	Conoscenza e capacità di comprensione:	
	Gli studenti dovranno dare prova di conoscere e di comprendere i fondamenti della Fisica Teorica delle interazioni fondamentali	
	Conoscenza e capacità di comprensione applicate:	
	Gli studenti dovranno dare prova di saper risolvere problemi di Fisica	

	teorica delle interazioni fondamentali
	Autonomia di giudizio:
	Gli studenti dovranno mostrare di avere acquisito autonomia e capacità
	di ragionamento critico sugli argomenti trattati nell'insegnamento.
	Abilità comunicative:
	Gli studenti dovranno essere in grado di esporre i concetti appresi
	durante il corso utilizzando un linguaggio chiaro, appropriato e
	scientificamente rigoroso.
	Capacità di apprendere:
	Gli studenti dovranno essere in grado di esaminare ed approfondire in
	maniera autonoma problematiche di Fisica Teorica delle interazioni
	fondamentali.
Criteri di misurazione	Il voto è attribuito in trentesimi.
dell'apprendimento e di	L'esame si intende superato quando il voto è maggiore o uguale a 18.
attribuzione del voto finale	Agli studenti che mostrano piena padronanza della materia, anche considerando la
	capacità di esprimersi con proprietà di linguaggio, sarà assegnato il massimo dei
	voti (30 e lode).
Altro	