General information		
Academic subject	Interacting Quantum Fields	
Degree course	Physics	
Academic Year	1	
European Credit Transfer and Accumulation System (ECTS) 6		
Language	English	
Academic calendar (starting and ending date)		First week of March - Last week of May
Attendance	Preferred, Not compulsory	

Professor/ Lecturer		
Name and Surname	Antonio Marrone	
E-mail	Antonio.marrone@uniba.it	
Telephone	+39 080 5443463	
Department and address		
Virtual headquarters		
Tutoring (time and day)	On request	

Syllabus		
Learning Objectives	Understanding the concept of interactions between fields	
Course prerequisites	Free Quantum Field Theory and Mathematics knowledge	
Contents	The S-Matrix expansion - Wick's Theorem – Feynman diagrams in configuration space - Feynman diagrams in momentum space - Feynman rules for QED – QED processes in lowest order – Bhabha scattering – Compton scattering – Scattering by an external field – Bremsstrahlung – The infrared divergence – The second-order radiative corrections – The photon self-energy – The electron self-energy – External line renormalization – The vertex modification – Regularization - Applications	
Books and bibliography	F. Mandl, G. Shaw, Quantum Field Theory, Wiley; 2 edition Also J.D.Bjorken, S.D. Drell, Relativistic Quantum Fields, Mcgraw-Hill College	
Additional materials	Sone notes of the teacher	

Work schedule					
Total	Lectures		Hands on (Laboratory, working groups, seminars, field trips)	Out-of-clashours/ shours	ss study Self-study
Hours					
	55			120	
ECTS	ECTS				
	6				
Teaching strategy Lessons of		Lessons	on the board		
Expected learning	g outcomes				
Knowledge and understanding Understan		Understa	nding the concept of interactions between fields		
on:					
Applying knowledge and understanding on:		Implemen	ntation of a symmetry in physical models		

Soft skills	Making informed judgments and choices
	Ability to proceed autonomously in the study of quantum field theories
	Communicating knowledge and understanding
	Ability to express the acquired knowledge properly
	Capacities to continue learning
	Ability to study independently from texts and scientific literature

Assessment and feedback	
Methods of assessment	Oral test (100%)
Evaluation criteria	Adequate comprehension and global knowledge of concepts and arguments described throughout the course.
Criteria for assessment and attribution of the final mark	
Additional information	