General information			
Academic subject	COSMOLOGY		
Degree course	Physics (Magistrale)		
Academic Year	SECOND		
European Credit Transfer and Accumulation System (ECTS) 4			
Language	ENGLISH		
Academic calendar (starti	ng and ending date) last week of September 2021 – second week of December 2021		
Attendance			

Professor/ Lecturer	
Name and Surname	MAURIZIO GASPERINI
E-mail	gasperini@ba.infn.it
Telephone	080 – 544 3465
Department and address	Dipartimento di Fisica – Universita' di Bari
Virtual headquarters	http://www.ba.infn.it/~gasperin/academic.html
Tutoring (time and day)	tuesday and wednesday , 15-17

Syllabus	
Learning Objectives	Introduction to the standard cosmological scenario and discussion of simple examples of inflationary models.
Course prerequisites	Special relativity, elements of physics of the fundamental interactions.
Contents	Einstein equations and Riemannian geometry. The metric of Friedmann-Lemaitre-Robertson-Walker: cosmological redshift, particle horizon and event horizon. Perfect fluids as sources of cosmic gravity. The standard cosmological model: the matter-dominated and the radiation-dominated phase. The luminosity-redshift relation: Hubble law and cosmic acceleration. Dark matter, dark energy, flatness and horizon problems. The initial singularity and the exact de Sitter solution. The primordial inflationary era: the inflaton field and the "slow-roll" scenario, simple examples of exact and approximate solutions. Computation of the "e-folding" parameter.
Books and bibliography	M. Gasperini, Lezioni di Cosmologia Teorica (Sprinter-Verlag, Milano, 2012).
Additional materials	

Work schedule					
Total	Lectures		Hands on (Laboratory, working groups, seminars,	Out-of-class study	
			field trips)	hours/ Self-study	
				hours	
Hours	Hours				
101	33			68	
ECTS					
	4				
Teaching strategy					
		Class le	ctures/exercises using blackboard.		

Expected learning outcomes	
Knowledge and understanding	Basic knowledge of standard and inflationary cosmology.
on:	Understanding of the basic structure of the Universe on large scales
	of distances.
Applying knowledge and	Application of the main astrophysical observations and of the
understanding on:	theoretical models of fundamental interactions in order to study the
	dynamics of our Universe and its primordial evolution.
	·
Soft skills	Making informed judgments and choices
	Ability to discuss and to compare different theoretical models and to look
	for precision observational tests.
	Communicating knowledge and understanding
	Ability to interact with professional people specialized in the field of
	cosmology and astroparticle physics.
	Capacities to continue learning
	Ability to approach the specialistic literature and to work in a
	multidisciplinary context.

Assessment and feedback	
Methods of assessment	Oral colloquium including exercises and calculation tests to be performed
	on the blackboard.
Evaluation criteria	Knowledge and understanding
	knowledge and understanding of the basic aspects of standard and
	inflationary cosmology;
	Applying knowledge and understanding
	ability to perform simple calculations concerning the main
	astrophysical observables;
	Autonomy of judgment
	ability to discuss the main differences between various possible
	models of the early Universe;
	Communicating knowledge and understanding
	ability to present and to discuss with a professional language the current
	astrophysical observations and their implications for those theoretical
	models that aim to describe the primordial evolution of our Universe; • Communication skills
	ability to access the specialistic literature
	Capacities to continue learning
	ability to apply the notions and the working methods learned in this
	course also to differerent (possibly non-standard) cosmological
	scenarios.
Criteria for assessment and	Numerical rating from 0 to 30 attributed on the ground of the evaluation criteria
attribution of the final mark	listed above.
Additional information	