

DIPARTIMENTO DI Medicina Veterinaria

ACADEMIC YEAR 2022/2023

General information		
Academic subject	BIOCHEMISTRY 1	
Degree course	Veterinary Medicine LM42	
Academic Year		
ECTS	6 (lectures:5 ECTS; practical activities: 1 ECTS)	
Language	Italian	
Academic calendar	II 7 weeks period	
Attendance	Mandatory	

Professor/ Lecturer	E-mail	Telephone	
Vito Porcelli	vito.porcelli@uniba.it +39 0805442772		
Headquarter	Campus of Veterinary Medicine, S.P. 62 per Casamassima km 3, 70010 Valenzano		
Virtual headquarter	Teams code: uazerrj		
Tutoring (time and day)	Friday 9:00-11:00 am 3:00-4:00 pm by appointment via mail		

Syllabus	
Learning Objectives	The course aims to provide to the students the key to understanding the behaviour of organic molecules that will be fundamental for understanding the biochemistry and chemistry of biological compounds (proteins, lipids, carbohydrates and nucleic acids). The main training objective is the introduction to a rigorous scientific method gradually introduced in which the behaviour of the molecules and the reaction mechanisms can be deduced on the basis of the knowledge of the basic properties of organic molecules. Finally, the course proposes to impart information on the main laboratory techniques for the qualitative and quantitative study of biological molecules in the medical-veterinary field.
Course prerequisites	Prerequisite: Chemistry. The student must have acquired knowledge and skills relative to general topics of physics (thermodynamic), and cytology (structure of the eukaryotic cell).
Contents	The course belongs to Basic subjects
CFU: 5 Hours: 40	Introduction to organic chemistry: Alkanes: Nomenclature. Position and conformational isomerism. Reactions of halogenation and combustion. Cycloalkanes. The cyclohexane. Conformational and geometric isomerism in cycloalkanes. The reaction mechanisms. The concept of electrophile and nucleophile. Carbocations and carbanions. Alkenes and alkynes: Nomenclature. Geometric isomerism. Electrophilic addition reactions to alkenes: general mechanism. Addition reactions: hydracids, water and halogens. Stereochemistry of oxidation reactions. Notes on the polymerization reactions of alkenes. Aromatic hydrocarbons Benzene: structure, aromaticity and stabilization energy. Optical Isomerism: Chirality. Enantiomers, racemes and diastereomers. Chiral carbons. Basics Alkyl Halides: Nomenclature. Alcohols and Glycols: Nomenclature. Acidity of alcohols. Alcoholics. Dehydration of alcohols to alkenes (E1 mechanism).

DIPARTIMENTO DI Medicina Veterinaria

Oxidation of alcohols to carbonyl compounds. Glycols and glycerol: synthesis
and properties. Ethers, epoxides and phenols: Nomenclature and synthesis.
Aldehydes and Ketones: Nomenclature. Nucleophilic addition reactions to
carbonyl: Acetals and hemiacetals, Aldimmines and Schiff bases. Enols and
enolates: keto-enol tautomerism and its importance in metabolic processes.
Carboxylic Acids: Nomenclature. Carboxyl structure. Acidity. Esterification.
Acyl halides and anhydrides: synthesis and reactions. Reduction reactions.
Fatty acids and their salts. Foreign: Nomenclature. Fisher's esterification
Sanonification Soans Reactions of formation of the carbon-carbon bond:
Aldel condensations. Similarity between Claison condensation and that of
the lost or
Linuesters.
Amino Acids and Proteins: Classification of amino acids. Peptide bond.
Proteins: primary, secondary, tertiary and quaternary structure. Functional
classification of proteins: catalytic, supporting, transport, hormones. Amino
acid derivatives: biogenic amines
Carbohydrates (simple and complex): Sugars: Aldoesosis and Ketoesosis.
Epimers. Glucosides and their biological importance. Pentosis and N-
ribosides. Glucosamines. Disaccharides: maltose, cellobiose, lactose, sucrose.
Oligosaccharides. Polysaccharides: starch, cellulose, glycogen and their
structure. Glycoproteins: structure and classification: immunoglobulins, milk
and plasma glycoproteins and blood groups.
Lipids: classification and biological functions. Simple lipids: fatty acids,
saturated and unsaturated fatty acids. Isomerization. Triglycerides.
Saponifications. Micelles and soaps. Oxidative rancidity. Phospholipids.
glycolinids and lipoprotein systems of particular medical-veterinary interest.
Prostaglanding and steroids. Phenolic antioxidants, ascorbic acid and
carotenoids
Nucleic acids: nurine and nyrimidine bases, nucleotides and nucleic acids:
DNA (nDNA and mtDNA) PNA (mPNA tPNA)
Microputrients: water coluble and fat coluble vitaming structure, biological
wicronucheniss, water-soluble and lat-soluble vitamins, structure, biological
action, mechanism of action, hypo and hypervitaminosis.
Enzymes: nomenclature and classification, structure, active sites and
enzymatic specificity, enzymatic kinetics and regulation. Inhibitors and their
mechanism of action. Main reactions catalyzed by enzymes.
DNA replication mechanisms in prokaryotic and eukaryotic cells, gene
transcription and post transcriptional modifications. Protein synthesis and
post-translational modifications.
Biochemical laboratory techniques: Preparation and manipulation of
biological samples. Buffers used in biochemistry.
Spectrophotometry: Properties of electromagnetic radiation, atomic and
molecular absorption spectra, Lambert-Beer law, classification of
spectrophotometers: single beam, double beam and double wavelength:
Structure and function of: sources, monochromators, sample holders and
detectors: measurement of the molar extinction coefficient dosage of
enzymatic activity and dosage of a substrate in biological cample
Main molecular hiology techniques: DCP_Pool time DCP and PT_DCP
restriction onzymos

	Recombinant DNA technology and its applications in the heterologous expression of proteins.
	Chromatographic techniques: classification and principles. Factors influencing the chromatographic process: partition coefficient, capacity factor, selectivity factor and column efficiency. Chromatography by partition, ion exchange, molecular exclusion and affinity. Immunochemical techniques, Immunoprecipitation. Western blotting analysis of a protoin sample.
Laboratory acitivity	Students are grouped in 8-10 people.
	Enzymatic spectrophotometric assay using a biological sample
CFU:1	Extraction, purification and electrophoretic assay of DNA plasmid from E. <i>coli</i>
Hours: 10	culture
Biosecurity standards for the	Access to the laboratories is allowed only to students equipped with
frequency of laboratory	protective clothing (lab coats or disposable latex gowns and gloves), who
activities	have read the biosecurity manual
Books and bibliography	Chimica e Propedeutica Biochimica - F. A. Bettelheim, W. H. Brown, M. K.
	Campbell, S. O. Farrell, O. J. Torres - EDISES
Additional materials	Slides from the lessons, scientific articles and others will be available to the
	students.

Work schedule				
Total	Lectures		Hands on (Laboratory, working groups, seminars,	Self-study hours
			field trips)	
Hours				
150	40		10	100
ECTS				
6	5	-	1	
Teaching strategy	/	Lectur	res and exercises are traditionally presented by	the teacher in the
		classr	oom (no e-learning mode) that are provide of co	mputers connected
		on-lin	e. The laboratory experience will be done in small	groups of students,
		the pr	incipal techniques in the field of biochemistry will b	performed under
		the supervision of teacher.		
Expected learning	goutcomes		•	
Knowledge and understanding		0	The student will be able to recognize the stru	cture. function and
on:			reactivity of the principal organic molecules with the complex	
			structure of biological macromolecules	· · · · · ·
		0	The student will be able to apply the correct labor	ratory technique for
		0	the quantitative or qualitative study of the macro	
			the quantitative of quantative study of the macro	molecules.
Applying knowled	dao and		The student will be able to correlate the melecul	lar machanisms and
understanding or	age and	0	the functions of higherical malegulas to collula	
understanding of				
			how modification of these are able to cause veter	rinary pathology
		0	The student will be able to identify the correct la	aboratory technique
			for the quantitative or qualitative assay of the ma	acromolecules
Soft skills		• M	laking informed judgments and choices	
		The st	tudent will be able to recognize and describe the	principal groups of

U.O. Didattica e servizi agli studenti Strada prov.le 62 per Casamassima, km. 3,00 70010 Valenzano (Bari) - Italy Tel. (+39) 080 5443944-41-46 • fax (+39) 080 5443939 didattica.veterinaria@uniba.it

Dipartimento di Medicina Veterinaria

	biological macromolecules, the interactions and the functions of these, will
	be most important to understand the arguments of the next courses.
	Moreover, the notions acquired will be used by students to describe
	different metabolic pathway that occur in the cell (DOC 2.2).
	Communicating knowledge and understanding
	The student will be be able to describe the structure, reactivity and function
	of different biological macromolecules in a comparative and critical manner.
	this ability must be acquired both with reference to communication to
	professional entities and for disclosure purpose. (DOC 1.4)
	Capacities to continue learning
	The course aims to provide methodological approaches and basic techniques
	to be applied subsequently in the profession of medical veterinary, particular
	emphasis on the most relevant aspects for entry into the labour market and
	professional success. (DOC 1.8)
Summary of the integrated	Knowledges:
knowledge and skills that the	1.4
course contributes to acquiring	1.8
students (Day One	Skills:
Competence) envisaged by the	2.2
EAEVE	

Assessment and feedback	
Methods of assessment	The examination consists in oral test based on the course contents
Evaluation criteria	Knowledge and understanding
	The student must be able to write the principal functional groups of organic
	compounds.
	 Applying knowledge and understanding
	The student must be able to correlate the role of functional groups to the
	macromolecules and to apply the correct test assay.
	Autonomy of judgment
	The student must be able to organize a discussion about a class of biological
	molecules.
	Communicating knowledge and understanding
	The student must be able to use the correct form to describe the
	macromolecules using scientific terminology.
	Communication skills
	The student must be able to use the correct form to describe the
	macromolecules using scientific terminology, moreover the discussion of
	contents must be clear and simple for people of the field and not
	Capacities to continue learning
	The student must be able to use data bank, original articles for individual
	update.
Criteria for assessment and	The final grade is expressed as out of thirty. The exam is passed when the
attribution of the final mark	grade is greater than or equal to 18/30. Knowledge of all biological
	macromolecules and their reactivity is a prerequisite for passing the exam.
	The use of correct scientific terminology, the ability to identify the
	appropriate laboratory techniques for the study of macromolecules, as well

Dipartimento di Medicina Veterinaria

	as the ability to organize a speech by spacing and correlating the various concepts acquired, will contribute to the increase of the final grade.
Additional information	To obtain the attendance signature and take the exam, students must attend 75% of the theoretical lessons and 75% of the exercises, unless the COVID state of emergency persists, in which case the lessons will be provided remotely