General information	
Academic subject	Computational Intelligence
Degree course	Computer Science (LM-18)
Curriculum	Knowledge Engineering and Machine Intelligence
Credits	6
Compulsory attendance	No, but recommended
Language	English

Teachers	Name Surname	E-mail address
	Gennaro Vessio	gennaro.vessio@uniba.it
	Gabriella	gabriella.casalino@uniba.it
	Casalino	

Credit details	Туре	# credits	hours
	Lectures	4	32
	Laboratory	I	15
	Student project	I	

Schedule	
Period	1st semester
Year	2nd
Type of class	Lectures + tutorials + seminars

Time management	
Hours	47
Lectures	32
Laboratory	15

Calendar	
Class begins	September 28, 2020
Class ends	January 13, 2021

Syllabus	
Prerequisites	None. Students who attended the Artificial Intelligence course
	in the first year can have some advantages.

Expected learning outcomes (according to	Knowledge and understanding	
Dublin Descriptors)	Students will know the basics, main tasks and main	
	approaches to Computational Intelligence, with particular	
	attention to Neural Networks.	
	Applying knowledge and understanding	
	Students will be able to apply Computational Intelligence	
	techniques to specific problems in several interdisciplinary	
	areas, to adequately set the techniques for a fruitful	
	application and to set up evaluation experiments.	
	Making informed judgements and choices	
	Students will be able to compare different Computational	
	Intelligence techniques and choose the appropriate ones to	
	address specific problems. They will also be able to evaluate	
	the experimental results and link them to the characteristics	
	of the technique evaluated.	
	Communicating knowledge and understanding	
	Students will be able to work in teams, completing their	
	knowledge of Computational Intelligence in order to realize a	
	fruitful collaboration with other types of skills of other team	
	members.	
	Capacities to continue learning	
	Students will be provided with methodological foundations	
	that will enable them to understand the latest developments	
	in Computational Intelligence. Classes will make use of recent	
	scientific articles and authoritative websites that will allow	
	students to stay up to date on advances in Computational	
	Intelligence.	
Content	Preliminaries	
	Machine learning: A tour of the classics	
	Neural networks	
	Convolutional neural networks	
	Genetic algorithms Genetic algorithms	
	Fuzzy systemsApplications	
	- дрикацопа	

Course program		
Bibliography	•	Russel, S., & Norvig, P. (2013). Artificial intelligence: A
		modern approach. Pearson Education Limited

	 Engelbrecht, A. P. (2007). Computational intelligence: An introduction. John Wiley & Sons James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning. New York: Springer Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press Chollet, F. (2017). Deep Learning with Python. Manning Publications Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems. O'Reilly Media 	
Notes	When needed, students will be provided with additional material, such as articles or online resources.	
Teaching methods	Lectures, classroom programming tutorials and seminars.	
Assessment methods	Oral exam on a previously submitted case study (no later than one week before).	
Evaluation criteria	 Ability to identify the appropriate method to address a specific problem. Ability to apply the method to try to solve the problem. Ability to critically discuss the main strengths and limitations of the proposed approach. Ability to write and clearly present the case study carried out. 	
Further information	It is highly recommended to feed your curiosity by independently exploring topics not explained directly in the course, as the panorama is very vast, full of ideas and constantly evolving.	