MODELLO D (inglese)				
General Information	AA 2020-2021			
Academic subject	Numerical Methods for Computer Science			
Degree course	Master Degree in Computer Science			
Curriculum				
ECTS credits	9			
Compulsory attendance	No			
Language	English			
Subject teacher	Name Surname	Mail address	SSD	
	Mazzia	francesca.mazzia@uniba.it	MAT/08-	
	Francesca;	antonella.falini@uniba.it	Numerical	
	Antonella Falini		Analysis	
DOTO and the data its	7	2		
EUTS credits details	/	2 December 1 alternation		
Basic leaching activities	Lectures	Programming laboratory		
Class schedule		1		
Period	First term			
Vear	First term			
Type of class	Filst year Lectures Programming leberatory			
	Lectures- 1 logram			
Time management				
Hours	86			
Hours of lectures	56			
Tutorials and lab	30			
Academic calendar				
Class begins	October 5, 2020			
Class ends	January 13, 2021			
Syllabus				
Prerequisites/requirements	Basic knowledge	of methods in Numerical Analy	/sis	
Expected learning outcomes (according to	Knowledge and u	nderstanding		
Dublin Descriptors) (it is recommended	Knowledge and	Knowledge and understanding of numerical linear algebra		
that they are congruent with the learning	techniques useful	l for treating structured data.	Application of	
outcomes contained in A4a, A4b, A4c	optimization meth	ods for solving problems in dat	a mining, image	
tables of the SUA-CdS)	processing and in	formation retrieval.		
	Applying knowled	lge and understanding		
	Acquiring the main numerical linear algebra techniques for			
	treating real world	problems. Ability to design eff	icient numerical	
	codes implementing numerical techniques for solving problems			
	in data mining, in	lage processing and information	n retrieval.	
	Mastering basic	and advanced numerical	linear algebra	
	techniques to model real world problems Ability to design and			
	to implement efficient algorithms for the treatment of data-mining			
	and image processing applications.			
	Making informed	judgements and choices		
	Judgment autonomy is acquired through critical study and			
	interpretation of texts. The achievement of an adequate autonomy			
	is verified through	gh the exercises, which are	held during the	

	teaching programme and with the final written and oral examinations.
	Communicating knowledge and understanding Students are able to express the topics included in the teaching programme by employing the specific lexicon of the discipline. Lifelong learning skills Learning an appropriate studying methodology, supported by text consultation and implementation of the techniques proposed during the course.
Contents	 Numerical Linear Algebra Basic and Advanced Notions Systems of nonlinear equations and optimization. Least squared approximation methods. Low Rank matrix approximation techniques and dimensionality reduction methods. Mathematical methods for information retrieval.
Course program	Numerical Linear Algebra: Space of matrices. Operation with matrices. Properties of square and rectangular matrices. Vector spaces and subspaces. Spanning sets. Range and Null spaces. Basis of subspaces. Rank, connectivity and graphs. Properties of AA^T and A^TA. Linear Transformations. Similarity. Structured matrices and their properties. Norms, scalar product and orthogonality. Applications to reconstruction error functions in image processing.
	Gram-Schmidt ortho-normalization algorithm. QR factorization. Eigenvalues, eigenvectors and their properties. QR method. Power method, Singular Value Decomposition. Eckart- Young Theorem. Truncated SVD. Principal Component Analysis. Eigenvalues applications: Pagerank algorithm and eigenface model, image compression.
	Unconstrained optimization. Line search method. Gradient descent methods
	Basics of Vector Calculus (2D and 3D). Newton methods. Least squares problems. System of normal equations and their properties. Least squares line and the optimization problem related. Support vector machines and their formulation as an optimization problem. Optimization and machine learning. Stochastic gradient descent method. Latent <u>Semantic</u> Indexing. Mathematical Models and Text Retrieval. Eigenbased methods for web information retrieval.
Bibliography	 C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2003.

	2. Lars Eldèn, Matrix Methods in Data Mining and Pattern	
	Recognition, SIAM 2007	
	3. A. N. Langville, C. D. Meyer: Google's PageRank and	
	beyond. Princeton Univ. Press, 2006.	
	4. D. G. Luenberger, Y. Ye: Linear and Nonlinear	
	Programming. Forth Edition, Springer.	
	5. M. W. Berry, M. Browne. Understanding Search Engines:	
	Mathematical Models and Text Retrieval. SIAM, 1999.	
	6. A. Cichocki, R. Zdunek, A.H. Phan, S.I Amari, Nonnegative	
	Matrix and Tensor Factorizations, Wiley, 2009	
	7. M. Turk and A. Pentland. Eigenfaces for recognition. Journal	
	of Cognitive Neuroscience 3(1): 71–86.	
	doi:10.1162/jocn.1991.3.1.71 (1991)	
Notes	All the references will be integrated by suggested readings, slides	
	and notes provided during the lectures	
Teaching methods	Lectures. Laboratory experiments with open source software and	
	available datasets.	
Assessment methods (indicate at least the	Written and oral examinations.	
type written, oral, other)		
Evaluation criteria (Explain for each	Students will be evaluated on the basis of the level of their	
expected learning outcome what a student	knowledge concerning the various topics included in the syllabus.	
has to know, or is able to do, and how		
many levels of achievement there are).		
Further information		