MODELLO D (inglese)			
General Information			
Academic subject	Machine Learning		
Degree course	Computer Science (second-level degree in Computer		
	Science)		
Curriculum			
ECTS credits	6		
Compulsory attendance	No		
Language	English		
	N		
Subject teacher	Name Surname	Mail address	SSD
	Nicola Di Mauro	nicola.dimauro@uniba.it	INF/01
ECTS gradite dataile		SSD	
Locturors workshops and project	6 crodits	33D INE/05	
		1117/05	
Class schedule			
Period	First semester		
Year	Second year		
Type of class	Lecture- workshops		
	1		
Time management			
Hours	150		
Hours of lectures	32 + 68		
Tutorials and lab	15 + 10		
	25		
Academic calendar			
	Sept. 23, 2010		
	Jan. 10, 2020		
Syllabus			
Prerequisites/requirements	Basic knowledge in Probability Theory		
rerequisites/requirements	Basic knowledge in Discrete Mathematics and Calculus		
	Basic knowledge in Computer Science		
Expected learning outcomes (according to	Knowledge and understandina		
Dublin Descriptors) (it is recommended	the neede and analysianding		
that they are congruent with the learning	The class provides the students with theoretical and		
outcomes contained in A4a, A4b, A4c	metodological skills on machine learning. The class focuses		
tables of the SUA-CdS)	on supervised and unsupervised learning, regression and		
	generative models.		
	Applying knowledge and understanding		
	The students will be able to use the acquired knowledge to a		
	find the method fitting the problem to be solved: b) adopt the		
	appropriate machine learning tool for real world problem: ()		
	evaluate the obtained rsults		
	Making informed judgements and choices		
	The class gives the students the ability to model real world		
	data with machine learning tools and making preditions on		
	new data. The exam requires the student to solve a real world		
	machine learning problem.		

	Communicating knowledge and understanding The student will improve their knowledge in building machine learning systems for solving complex problems. Their ability in using the appropriate method will be evaluated in the exam. <i>Capacities to continue learning</i> The content propvided in the class will be useful to study in depth machine learning papers appearing in international conferences.
Contents	 Introduction to Machine Learning Linear regression and classification Logistic regression Naive Bayes classifier and K-nearest neighbors. Kernel and support vector machines. Classification and regression trees. Random forest. Boosting Probabilistic graphical models. Unsupervised learning: K-means, K-medoids, mixture models, EM Intro to Deep Learning Feed-Forward Neural Networks. Training Feed-Forward NNs: gradient descent and back-propagation. Regularization. Convolutional Networks. Recurrent Networks. Autoencoders. Density estimation and generative models
Course program	
Bibliography	 Pattern Recognition and Machine Learning by Christopher M. Bishop, 2018 The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie and Robert Tibshirani, 2016 Machine Learning: A Probabilistic Perspective by Kevin P. Murphy, 2012 Deep Learning by Ian Goodfellow and Yoshua Bengio, 2016 Deep Learning with Python by Francois Chollet, 2018 Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow, by Sebastian Raschka and Vahid Mirjalili, 2017
Notes	
Teaching methods	Lectures, exercises in the classroom
Assessment methods (indicate at least the type written, oral, other) Evaluation criteria (Explain for each expected learning outcome what a student has to know, or is able to do, and how many levels of achievement there are.	Oral - Ability to explain the differences among different ML methods - Ability to choose the correct ML approach for a given problem - Ability to evaluate the results of a ML approach