MODELLO D (inglese)				
General Information				
Academic subject	Artificial Intelligence			
Degree course	Computer Science L.M.			
Curriculum	-			
ECTS credits	9	9		
Compulsory attendance	No			
Language	English			
Subject teacher	Name Surname	Mail address	SSD	
	Stefano Ferilli	stefano.ferilli@uniba.it	INF/01	
		<u> </u>		
ECTS credits details				
Basic teaching activities				
Class schedule		1	I	
Period	2nd semester			
Year	1st			
Type of class	Lecture- workshops			
Time management				
Hours	154+71 = 225 (9 CFU)			
Hours of lectures	56			
Tutorials and lab	15			
	10			
Academic calendar				
Class begins	February 25 th 2020			
Class ends	May 28 th 2020	0		
	Widy 20 , 2020	iviay 20 , 2020		
Syllabus				
Prerequisites/requirements	None Students having attended Knowledge Engineering and			
requirements	Expert Systems classes in I level degree may have an			
	advantage.			
Expected learning outcomes (according to	Knowledge and understanding			
Dublin Descriptors) (it is recommended	The students will know the foundations the main tasks and the			
that they are congruent with the learning	main approaches to Artificial Intelligence with particular			
outcomes contained in the Didactic	focus on the symbolic perspective. They will also know in			
Regulation and Prospectus a.a. 2017-2018)	detail outstanding	detail outstanding algorithms from the literature		
		8		
	Applying knowledg	ge and understanding		
	The students wil	l be able to apply Artifi	cial Intelligence	
	techniques to specific problems, to properly set up the			
	techniques for fru	itful application, and to se	et up evaluation	
	experiments.			
	Making informed j	udgements and choices		
	The students will	be able to compare the fe	atures, pros and	
	cons of different	Artificial Intelligence tec	hniques, and to	
	choose those that	are appropriate to tackle sp	pecific problems.	
	They will also be	able evaluate the experimen	tal outcomes and	
	to trace them to the	e features of the evaluated to	echnique.	
		1 1 1 1 1		
	Communicating knowledge and understanding			
	The students will	be able to work in team,	bringing to bear	
	their knowledge o	t Artificial Intelligence in o	rder to carry out	

	fruitful cooperation with other kinds of expertise from other
	members of the team.
	Capacities to continue learning
	The students will be provided with all the historical and
	methodological foundations that will allow them to understand
	the latest developments of Artificial Intelligence and to store
	the latest developments of Artificial Intelligence and to stay
	up-to-date with advances in Artificial Intelligence.
Contents	Artificial Intelligence
	Introduction to the course: aims, objectives, structure,
	organization expected results Introduction to Artificial
	Intelligence: relationships to Computer Science history
	interingence. Tetationships to Computer Science, instory,
	objectives, branches, applications. Intelligent Agents: features,
	structure, types. Applications of Artificial Intelligence.
	Logic Programming and Prolog
	Recall of the basics of propositional and first-order logic:
	history, operators, proofs, properties, Clausal logic; definition,
	relation to full first-order logic resolution unification and
	nottern metching Logic Programming: procedural
	interpretation of Herr Clauses SLD resolution Droles:
	interpretation of norm Clauses, SLD resolution. Prolog.
	syntax, use for knowledge bases, use as a programming
	lanugage.
	Heuristic Search and Problem Solving
	Problem solving approaches: cases in which an algorithm is
	not known. Search in a space of states: operators, strategies,
	heuristic functions: non-informed search informed search: A*
	algorithm Problem solving in games: min-max algorithm
	algorithm. I tobicin solving in games. min-max algorithm,
	aipna-beta pruning
	• Engineering of Knowledge-based Systems
	Methodologies for developing knowledge based systems:
	analysis, conceptualization, design, implementation. Pattern
	Directed Inference Systems. Expert systems: structure,
	development, implementation in Prolog. Inference strategies:
	deduction, abstraction, abduction, induction, probabilistic
	reasoning argumentation analogy The ReLay system
	• Schemes for Knowledge Representation
	• Schemes for knowledge representation traditional logic model
	Logic for knowledge representation: traditional logic, modal
	logic. Ontologies: philosophical background, definitions,
	representation formalisms, description logics. Semantic nets,
	Conceptual Graphs, Frames and Scripts.
	Automatic Knowledge Acquisition
	The "knowledge acquisition bottleneck". Machine Learning
	and Data Mining. Taxonomy of Machine Learning
	Approaches Techniques and Systems Version Space and
	Candidate Elimination Algorithm Set-up procedure for
	running experiments in Machine Learning Suites of Machine
	Learning experiments in Machine Learning. Suites of Machine
	Learning systems.
	• Machine Learning and Declarative Knowledge
	Acquisition
	Logic-based approaches to Machine Learning: applications.
	advantages, issues. Relationships between Decision Trees and
	Rules Inductive Logic Programming generalization and
	specialization operators systems. The InThal Ex system
	Similarity opproaches for First Order Losis descriptions
	Similarity approaches for First Order Logic descriptions.

	• Process Mining Process Mining: aims and objectives, history, applications. Formalisms for representing process models. Strategies for automatic learning process models. Declarative process mining The WoMan system
Course program	
Bibliography	 S. Russell, P. Norvig "Artificial Intelligence: A Modern Approach" (3rd ed), Prentice Hall, 2009 P. Flach "Machine Learning" Cambridge University Press, 2012 W.F. Clocksin, C.S. Mellish "Programming in Prolog" (5th ed.) Springer, Berlin, 2003 Suggested:
	 N.J. Nilsson, "Problem-solving Methods in Artificial Intelligence" McGraw-Hill, 1971 J.W. Lloyd: "Foundations of Logic Programming" 2nd ed., Springer, 1982 T. M. Mitchell "Machine Learning", McGraw Hill, 1997 N. J. Nilsson "Artificial Intelligence: A New Synthesis" Morgan Kaufmann, 1998 J. F. Sowa "Knowledge Representation", Brooks/Cole, 2000. G. F. Luger "Artificial Intelligence", Addison Wesley, 5th ed. 2005 N.J. Nilsson, "The Quest for Artificial Intelligence: A History of Ideas and Achievements" Cambridge University Press, 2011
Notes	
Teaching methods	Lectures + Workshops
Assessment methods (indicate at least the type written, oral, other)	Oral test, requiring previous submission (no later than a week before) of two case studies
Evaluation criteria (Explain for each expected learning outcome what a student has to know, or is able to do, and how many levels of achievement there are).	 Knowledge of the history, approaches, techniques and algorithms of Artificial Intelligence Ability to identify the appropriate approaches, techniques and algorithms of Artificial Intelligence to be applied to given problems Ability to properly set up components based on Artificial Intelligence and to embed them in larger systems Ability to evaluate the performance of components based on Artificial Intelligence
Further information	