
MODELLO D (inglese)

General Information Formal Methods in Computer Science

Academic subject Theoretical Computer Science

Degree course Computer Science

Curriculum 6

ECTS credits

Compulsory attendance No

Language English

Subject teacher Name Surname Mail address SSD

 Giovanni Pani giovanni.pani@uniba.it Inf01

ECTS credits details

Basic teaching activities Lectures videos laboratory

Class schedule

Period First term

Year First

Type of class Lecture, laboratory, videos.

Time management

Hours 150

Hours of lectures 32

 Tutorials and lab 30

Academic calendar

Class begins 25
th
 September 2018

Class ends 12
th
 January 2019

Syllabus

Prerequisites/requirements Programming languages

Computability and Complexity

Expected learning outcomes (according to

Dublin Descriptors) (it is recommended

that they are congruent with the learning

outcomes contained in A4a, A4b, A4c

tables of the SUA-CdS)

Syntax and semantics of programming languages.

Applying knowledge to define programming languages and to

define interpreter using functional programming.

Choice a programming languages.

Design and develop software, also suggesting to evaluating

alternative solutions and define most appropriate

programming languages.

Capacities to continue learning.

Contents Formal Semantics of Programming languages. Functional

Programming.

Course program Theory.

Basic set Theory.

Logical notations. Sets. Relations and functions. The axiom of

foundation. Lambda notations. Composing relations and

functions. Direct and inverse image of a relation. Equivalence

relations.

Introduction to operational semantics.

IMP a simple imperative languages. The evaluation of

arithmetic and Boolean expressions; the execution of

commands.

Some principles of induction.

Mathematical induction, Structural induction, well founded

induction. Inductive definitions. Well founded induction.

Induction an derivations. Definition by induction.

Inductive definitions.

Rule induction, Special rule induction. Proof rules for

operational semantics. Rule induction for Arithmetical

expressions. Rule induction for Boolean expressions. Rukle

induction for commands. Operators and their least fixed

points.

The denotational semantics of IMP.

Denotational semantics. Equivalence of the semantics.

Complete partial orders and continuous functions. The Knaster

Tarski theorem.

 Introduction to domains theory.

Basic definitions. Streams, an example. Costruction on cpo’s.

Discrete cpo’s. Finite products, Function space. Lifting. Sums.

A metalanguage.

Recursion equations.

The language REC. Operations and denotational semantics for

call by value. Equivalence of the two semantics. Operations

and denotational semantics for call by name. Equivalence of

the two semantics.

Languages with higher types.

An Eager language. Eager operational and denotational

semantics. Agreement of the two semantics (no proof). A lazy

language. Lazy operational and denotational semantics.

Agreement of the two semantics (no proof). Fixed point

operators.

Laboratory. Haskell.

Functions. Functional programming. Features of Haskell.

The hugs system. The standard prelude. Functional

application. Haskell scripts.

Types and classes. Basic concepts. Basic types. List types.

Tuple types. Function types. Curried Functions.Polimorphic

types. Overloaded types. Basic classes. Functions.

Defining functions. Conditional expressions. Guarded

equations. Pattern matching. Lambda expressions. Sections.

List comprehensions. Generators. Guards. The zip function.

String comprehensions.

Recursive functions. Recursions on lists. Multiple arguments.

Multiple recursions. Mutual recursions.

Higher order functions.

Processing lists. The foldr function. The foldl function. The

composition operator.

Functional parser and monads. Parser. The parser type. Basic

parsers. Sequencing. Choice. Derived primitives. Hamdling

spaces. Arithmetical expressions.

Interactive programs. Interaction. The input output type. Basic

actions. Sequencing. Derived primitives.

Declarating types and classes. Type declarations. Data

declarations. Recursive types. Abstract machine. Class and

instance declarations.

List comprehensions. Recursive functions. Higher order

functions. Functional parser. Interpreter.

Bibliography G. Winskel , The formal semantics of programming languages,

Mit press.

G. Hutton, Programming in Haskell, (II edition) Cambridge

University Press.

Notes

Teaching methods Lectures, videos, laboratory

Assessment methods (indicate at least the

type written, oral, other)

Laboratory. Theoretical part exam either written or oral

Evaluation criteria (Explain for each

expected learning outcome what a student

has to know, or is able to do, and how

many levels of achievement there are.

Marks. Laboratory minimum 6 max 10 plus theoretical part

minimum 12 max 20.

Further information

