MODELLO D (inglese)				
General Information	AA 2018-2019			
Academic subject	Numerical Methods for Computer Science			
Degree course	Master Degree in Computer Science			
Curriculum	Triuster Begree in	esimpater science		
ECTS credits	12			
Compulsory attendance	No			
Language	English			
Lunguage	Diigiisii			
Subject teacher	Name Surname	Mail address	SSD	
J	Nicoletta Del	nicoletta.delbuono@uniba.it	MAT/08-	
	Buono		Numerical	
			Analysis	
ECTS credits details	8	4		
Basic teaching activities	Lectures	Laboratory experiments		
		3 1		
Class schedule			!	
Period	Second term			
Year	First year			
Type of class	Lectures- Laborat	ory experiments		
		- J 1		
Time management				
Hours	124	124		
Hours of lectures	64			
Tutorials and lab	60			
Academic calendar				
Class begins	February 25, 2019			
Class ends	May 31, 2019			
Syllabus				
Prerequisites/requirements	Basic knowledge of methods in Numerical Analysis			
Expected learning outcomes (according	Knowledge and u	nderstanding		
to Dublin Descriptors) (it is		understanding of numerical	linear algebra	
recommended that they are congruent		for treating structured data.		
with the learning outcomes contained in	optimization met	hods for solving problems i	n data mining,	
A4a, A4b, A4c tables of the SUA-CdS)		image processing and information retrieval. Knowledge and		
	understanding of	classical methods in statistical l	earning.	
	Applying knowledge and understanding			
	Acquiring the main numerical linear algebra techniques and			
	statistical learnin	g methods for treating real v	vorld problems.	
	Ability to design	n efficient numerical codes	implementing	
		ques for solving problems in		
		and information retrieval.		
	Making informed	judgements and choices		
	Judgment autonomy is acquired through critical study and			
		interpretation of texts. The achievement of an adequate		
		ified through the exercises,		
	_	ng programme and with the fi	nal written and	
	oral examinations			

	Communicating knowledge and understanding Students are able to express the topics included in the teaching programme by emploing the specific lexicon of the discipline. Lifelong learning skills Learning an appropriate studying methodology, supported by text consultation and implementation of the techniques proposed during the course.
Contents	 Numerical Linear Algebra Basic and Advanced Notions Systems of nonlinear equations and optimization. Least squared approximation methods. Low Rank matrix approximation techniques and dimensionality reduction methods Mathematical methods for information retrieval. Explorative Data Analysis
Course program	Numerical Linear Algebra. Space of matrices. Operation of matrices. Properties of square and rectangular matrices. Vector spaces and subspaces. Spanning sets. Range and Null spaces. Basis of subspaces. Rank, connectivity and graphs. Properties of AA^T and A^TA. Linear Transformations. Similarity. Structured matrices and their properties. Norms, scalar product and orthogonality. Gram-Schmidt ortho-normalization algorithm. QR factorization. Eigenvalues, eigen-vectors and their properties. QR method. Power method. Systems of nonlinear equations. Newton methods and theirs properties. Nonlinear programming. Gradient methods. Line search mechanism. Constraint optimization and KKT conditions. Penalization and barriers optimization methods. Linear programming and Simplex method. Least squared approximation methods. Linear regression techniques. Singular Value Decomposition. Eckart-Young Theorem. Truncated SVD. Principal Component Analysis. Latent Semantic Indexing. Mathematical Models and Text Retrieval. Eigenbased methods for web information retrieval. Hits and Pagerank algorithms. Nonnegative matrix factorization and dimensionality reduction
Dibliography	techniques. 1. V. Comincioli, Metodi numerici e statistici per le scienze
Bibliography	 V. Comincioli, Metodi numerici e statistici per le scienze applicate, Milano, Ambrosiana, 1992. C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, 2003. A. N. Langville, C. D. Meyer: Google's PageRank and beyond. Princeton Univ. Press, 2006. M. W. Berry, M. Browne. Understanding Search Engines: Mathematical Models and Text Retrieval. SIAM, 1999. A. Cichocki, R. Zdunek, A.H. Phan, S.I Amari, Nonnegative Matrix and Tensor Factorizations, Wiley, 2009 M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1): 71–86. doi:10.1162/jocn.1991.3.1.71 (1991)
Notes	All the references will be integrated by suggested readings, slides and notes provided during the lectures

Teaching methods	Lectures with slides. Laboratory experiments with open source
	software and available datasets
Assessment methods (indicate at least the	Written and oral examinations
type written, oral, other)	
Evaluation criteria (Explain for each	Students are to be evaluated on the basis of the degree of their
expected learning outcome what a student	knowledge concerning the various topic included in the syllabus.
has to know, or is able to do, and how	
many levels of achievement there are).	
Further information	