MODELLO D (inglese)	
General Information	
Academic subject	Database Systems
Degree course	Computer Science (second-level degree in Computer
	Science)
Curriculum	
ECTS credits	9
Compulsory attendance	no
Language	English

Subject teacher	Name Surname	Mail address	SSD
	Michelangelo	michelangelo.ceci@un	ING-INF/05
	Ceci	iba.it	

ECTS credits details			
Basic teaching activities	Basi di Dati	ING-INF/05	9
	Databases		

Class schedule		
Period	First semester	
Year	2017/2018	
Type of class	Lectures	
	Lab	

Time management	
Hours	86 (9 credits)
Hours of lectures	56 (7 credits)
Tutorials and lab	30 (2 credits)

Academic calendar	
Class begins	25/09/2017
Class ends	12/01/2018

Syllabus	
Prerequisites/requirements	Databases
Expected learning outcomes (according to	Knowledge and understanding
Dublin Descriptors) (it is recommended	BD design: general and practical concepts. Conceptual and
that they are congruent with the learning	logical design. Verifying templates by standardizing. Physical
outcomes contained in the Didactic	organization of data and design
Regulation and Prospectus a.a. 2017-2018)	physics.
	Active databases, Transaction management. Distributed architectures. Databases and WEB. Business intelligence tools. The process of knowledge discovery from databases
	The process of knowledge discovery from databases
	Applying knowledge and understanding
	Conceptual, logical and physical design of a database.
	Designing active databases.
	Design of Distributed Databases. Designing databases on the web. Datawarehouse building. Using selection tools, preprocessing and transformation of data, and validation of extracted patterns.
	The reference DBMS is Oracle 11g
	Making informed judgements and choices Making informed judgements and choices is exhactly the

	purpose of database design at every level: Conceptual, logical, phisical.
	<i>Communicating knowledge and understanding</i> Standard languages will be learned: E-R, UML . Students will be also evaluated on the basis of how much they are able to communicate design choices, at a logical, conceptual and phisical level.
	<i>Capacities to continue learning</i> The student will learn basic concepts that will make her/him on the position of use, understand and optimize any database on any DBMS (also distributed)
Contonto	on any DBMS (also distributed).
Contents	1) Methodologies and models for project definition: the life cycle of IT systems, one methodology for database design, the entity-relationship model (constructs and schema documentation).
	 Conceptual design: the collection and analysis of requirements, criteria for general representations, project strategies (top-down, bottom-up, inside-out, hybrid), the quality of a conceptual scheme, a general methodology.
	 3) Object-Relational databases. Data models not in the normal first form. From the relational model to objects. SQL-3: tuples and objects, type hierarchies, abstract types, queries with flattening and nesting. The manifest of third generation databases. An object-relational DBMS : Illustra. Implementation of objects in Oracle: Abstract Data Types, Collections, Row Objects, object view, inheritance type, runtime type identification. Logical
	 design in Object-Relational DBMSs. 4) BD technology. Physical organization of data, general concepts. Physical structures: sequential and hash. Physical structures: indices. B-tree. Running and optimizing queries. Execution and query optimization.
	 Buffer Management. Buffer algorithms. Physical design. 5) Active databases. Data bases and production systems. Trigger behavior in a relational system. Definition and use of triggers in Oracle. Evolved features of active rules. Active Rule Properties (termination, confluence and determinism of observations). Design problems and implementation of active databases. Active database
	 applications. 6) Transaction management. Transactions. Reliability control. The process of warm and cold restart. Concurrency control. View Serializability, Conflict Serializability, Two-Phase Locking, Timestamp Based
	 Concurrency Control. Hierarchical Lock. Deadlock resolution. Transactions in SQL-3. Transactions with different levels of isolation. 7) Database Architectures: Distributed Architectures. Client-
	server architecture. Distributed Data Bases. Distributed Databases Technologies. Two-stage commit protocols. Parallelism. Replicated Data Bases. Federated Data Bases.
	8) Information Systems Architecture on the World Wide Web. Internet and World Wide Web: Calls. Web Information Systems. Three-level architectures. Servlets

	 and JSPs. Multi-level architectures. EJB. Architectures and Services. Web application design. 9) Data Architectures (Datawarehousing). Operational data and decision-making data. Business Intelligence Technologies. Decision Support Systems (DSS), Executive Information Systems (EIS) and Management Information Systems (MIS). Features of a data warehouse. Architecture of a data warehouse. The multidimensional model. Data warehouse diagram: star, snowflake, constellation. OLAP and data analysis operations: drill down and roll up. ROLAP and MOLAP. A case study: the relational model of a DW for the agri-food sector. 10) Understanding the KDD Process and Data Mining Tasks. Taxonomy of Data Mining Tasks. Examples of descriptive data mining tasks. Examples of predictive data mining tasks.
	Oracle -introduction -procedures (PL/SQL) -triggers -types, types and inheritance -servlet and JSP -Oracle Warehouse builder
Course program	
Bibliography	Database systems: concepts, languages & architectures Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Riccardo Torlone ISBN: 007235387 http://dbbook.dia.uniroma3.it/ Slides presented during classes
Notes	Shues presented during clusses
Teaching methods	Lectures, lab. All with the support of Slides prepared by the teacher.
Assessment methods (indicate at least the type written, oral, other)	The exam consists of a written part and a laboratory part. The written part aims at verifying the conceptual, logical and physical design capabilities of a database. In addition, it aims at verifying the acquisition of all the topics addressed during the lectures. The laboratory part is an oral discussion of a small project and aims to verify the capabilities of designing a database and using the technologies used during the laboratory. Between the parts there is no propedeuticity (i.e., they are independent each other). The mark obtained for both parts expires in May 2018.
Evaluation criteria (Explain for each expected learning outcome what a student has to know, or is able to do, and how many levels of achievement there are).	During the teaching period, two partial evaluations are planned. If successful, they substitute the written exam. The student should prove to know all the concepts discussed during classes, as well as, show that he is able to design and implement a system according to the best practices discussed.

Further information