

General information			
Academic subject	PHYSICAL CHEMISTRY		
Degree course	Pharmaceutical Chemistry and Technology LM-13		
Year of study	Second year		
European Credit Transfer and Accumulation System (ECTS) 8			
Language	Italian		
Academic Year	2022-2023		
Academic calendar (starting and ending date) First semester (20 September 2021 - 21 January 2022)			
Attendance	mandatory attendance		

Professor/ Lecturer	
Name and Surname	Lucia Catucci
E-mail	lucia.catucci@uniba.it
Telephone	080-5442055
Department and address	Department of Chemistry, Via Orabona 4, 70126 Bari
Virtual headquarters	Microsoft Teams platform, course code yp8dfcv
Tutoring (time and day)	By appointment, to be agreed via e-mail

Syllabus	
Learning Objectives	The course aims to provide students with the fundamentals of thermodynamics,
	chemical kinetics and molecular spectroscopy with the aim of transmitting the
	knowledge and tools necessary to face and solve problems inherent to physical
	chemistry.
Course prerequisites	Basic knowledge of General and Inorganic Chemistry, Mathematics and Physics
Contents	1.0 The properties of gases.
	1.1 Equation of state of ideal gases.
	1. 2 Kinetic theory of gases:
	1.3 Real gases. Virial equation of state. Van der Waals law.
	2.0 Chemical thermodynamics.
	2.1 Introduction. Definition of system, environment, variables or
	thermodynamic functions. States of equilibrium and thermodynamic
	transformations. Heat and Work. Calorimetry.
	2.2 The first principle. Internal energy. Thermal capacity and specific heat.
	2.3 Enthalpy. Enthalpy of physical, atomic and molecular transformations.
	Thermochemistry. Law of Hess. Standard enthalpy of formation. Variation
	of enthalpy with temperature: Kirchhoff's law.
	2.4 Second principle. Statements. Spontaneous transformations.
	2.5 Entrony Thermodynamic definition Clausius inequality Adiabatic
	transformations. Thermodynamic cycles. Carnot's theorem and cycle
	Refrigerant cycles Entrony of a state transition Entrony variation with
	temperature Absolute entrony
	2.6 Third principle Nernst's theorem Boltzmann relation
	2.7 Helmholtz energy and Gibbs energy Maximum work function. Free
	energy of reaction Fundamental equation of thermodynamics Maxwell
	relations Thermodynamic equation of state Variation of Gibbs energy
	with pressure and temperature Gibbs-Helmholtz equation Eugacity and
	activity Partial molar sizes Chemical notential Thermodynamic criterion
	of aquilibrium. Clanovran equation. Gibbs energy of mixing. Posstion
	or equilibrium. Clapeyron equation. Globs energy of mixing. Reaction

	quotient and equilibrium constant. Le Chatelier's principle. Van't Hoff
	equation.
	3.0 Properties of solutions.
	3.1 Colligative Properties.
	3.2 Solubility.
	3.3 Repartition of a solute among immiscible liquids.
	4.0 Phase equilibria.
	4.1 State diagrams of mixtures. Two-component systems and
	temperature-composition diagrams. Solid-liquid systems: diagrams with
	eutectic; solid solutions. Liquid-liquid state diagrams for partially miscible
	two-component systems. Liquid-vapor state diagrams for mixtures of
	of immissible liquids
	of infinisciple liquids.
	5.1 Cohesion forces Molecular interactions Surface tension
	5.2 Colloids: definition and properties Tyndall effect Colloids:
	classification Coagulation and flocculation
	5.4 Surfactants: classification. Micelles and liposomes. Hydrophobic
	interaction. Biological membranes. Liquid crystals.
	6.0 Chemical kinetics.
	6.1 Reaction rates, rate constants and kinetic laws. Order of reaction.
	Kinetic laws in integrated form. Reactions of order 0, of the first, second
	and n order. Pseudo-order. Half-life. Molecularity of reactions.
	Elementary and non-elementary reactions. Kinetics of equilibrium
	reactions, of consecutive and competitive reactions.
	6.2 Dependence of the reaction rate on the temperature. Arrhenius
	equation. Collision theory. Activated complex and transition state theory.
	Catalysis. Homogeneous and heterogeneous catalysts. Enzymes and
	enzymatic catalysis.
	7.0 Quantum theory
	7.1 Failures of classical mechanics. Black body radiation. Low
	temperature neat capacity: Debye relation. Photoelectric effect, wave-
	particle dualism: De Broglie relation. Wave functions. Schrödinger
	equation. Interpretation of Born. Reisenberg's uncertainty principle.
	8.1 Spectra and structure of hydrogen atoms. Quantum numbers. Wave
	functions and orbitals
	8.2 The spin. Selection rules. Pauli exclusion principle. Hund's rule.
	8.3 Chemical bond. Valence bond theory. Hybrid orbitals. Resonance.
	8.4 Theory of molecular orbitals. LCAO method
	9.0 Molecular spectroscopy.
	9.1 General aspects. Rotational, vibrational and electronic spectroscopy.
	Fluorescence and phosphorescence. Principles of Nuclear Magnetic
	Resonance.
Books and bibliography	P.W. Atkins, J. De Paula. Elements of Physical Chemistry, Zanichelli, Bologna
	P.W. Atkins Physical Chemistry (third Italian edition) Zanichelli
Additional materials	Publisher's website

Work schedule

Total	Lectures		Hands on (Laboratory, working groups, seminars,	Out-of-class study	
			field trips)	hours/ Self-study	
				hours	
Hours					
200	70		10	120	
ECTS					
8	7		1		
Teaching strategy	Teaching strategy The course		e includes lectures with the support of PowerPoint presentations		
		(available	e on teams) and classroom exercises		
Expected learning	g outcomes				
Knowledge and understanding Kno		Knowled	Knowledge and understanding of the principles of the thermodynamics of		
on:		spectroscopy and of chemical kinetics			
Applying knowledge and Ac		Acquisition of methodological procedures for applications of thermodynamics,			
understanding on:		spectroscopy and chemical kinetics for qualitative, quantitative, structural and			
		kinetic de	eterminations		
Soft skills		• Mak	ing informed judgments and choices		
		Acquisitio	on of autonomy in the evaluation and interpretation	of experimental data	
		and in setting the strategies for applying the concepts studied in the			
		thermody	ynamic, spectroscopic and kinetic fields		
		• Com	municating knowledge and understanding		
		Ability to	communicate in written and oral form, in Italian a	and English, also with	
		the use o	f multimedia systems.		
		• <i>Capa</i>	acities to continue learning		
		Ability to	easily retrieve information from literature, database	es and the internet.	

Assessment and feedback	
Methods of assessment	Written and oral exam on all the topics of the program.
Evaluation criteria	Knowledge and understanding
	Students must demonstrate that they have acquired the fundamental concepts of
	thermodynamics, chemical kinetics and spectroscopy to achieve the skills
	necessary for the study of the disciplines included in the degree course.
	Applying knowledge and understanding
	Students must be able to apply the chemical-physical knowledge in the solution of the proposed exercises.
	Autonomy of judgment
	Students will have to demonstrate that they have mastered the basic physico-chemical
	principles acquired
	Communication skills
	Students must be able to express themselves in written and oral form, in a clear and rigorous way.
	Capacities to continue learning
	Students must demonstrate that they have critically acquired the fundamental notions and that they are able to identify interconnections and applications of the concepts acquired in real contexts.
Criteria for assessment and	The exam includes a written and an oral test.
attribution of the final mark	Students will be able to access the oral exam only if they pass the written exam
	Both tests contribute to determining the final mark.
	In addition to ascertaining the acquisition of notions, the autonomy of judgment
	and the ability to argue and explain is evaluated.

	The final mark is awarded out of thirty. The exam is considered passed when the mark is greater than or equal to 18.
Additional information	