General Information	
	MASTER DEGREE IN BIOTECHNOLOGIES
Title of the subject	Molecular Modeling and Protein engineering
Degree Course (class)	Industrial and Environmental Biotechnology (LM-8)
ECTS credits	6
Compulsory attendance	Yes
Language	Italian
Academic year	2020/2021

Subject Teacher			
Name and Surname	Ciro Leonardo Pierri		
email address	Ciro.pierri@uniba.it; Ciroleopierril@gmail.com		
Place and time of reception	0805443614		
ECTS credits details	Discipline sector (SSD)	Area	
	Bio/10		

Study plan schedule	Year of study plan		Semester	
	2020/2021		lst	
	·		·	
Time management	Lessons	Laboratory	Exercises	Total
CFU	5	I		6
Ore totali	125	25		150
Ore di didattica assistita	40	12		52
Ore di studio individuale	85	13		98

Syllabus

Prerequisites / Requirements

Knowledeg of unix like OS and scripting languages (python, perl, bash)

Expected learning outcomes (according to Dublin descriptors)				
Knowledge and understanding	Solving problems related to protein engineering and functional characterization			
Applying knowledge	Several software for dealing with protein sequences and protein structural data			
Making informed judgments and choices	Students will learn to create the right context for solving a biological problem by using existing data about protein sequences and structures.			
Communicating knowledge	Students will learn to transfer the acquired high-tech knowledge based on the employment of advanced molecular modeling tools to colleagues that need those technology and are not able to deal with it. They will also learn to coordinate the activities of a working group			

	for planning and validating the computational analyses necessary for
	finding a solution to a biological problem.
apacities to continue learning	The acquired know-how will represent the basis for creating the right context for most of biological problems concerning the characterization of a protein of unknown function within a metabolic pathway.
	Study Program
ontent	Introduction to molecular modeling and protein engineering; Sequence databases and tools (blast, biomart) for sequence sampling; text editors (TextPad; Gedit; TextWrangler); sequence editors (Jalview, Bioedit) and sequence comparative analyses; molecular visualizers (SPDBV, PyMOL, Chimera, Autodock); tools for secondary structure prediction and folding recognition methods (psipred, pgenthreader and itasser); tools for manual interactive comparative modeling and in silico mutagenesis (SPDBV and Modeller); tools for docking analyses and virtual screening (SwissDock, Autodock)
bliography and textbooks	Lehninger Principles of Biochemistry; Textbook of structural biology; DeepView Manual <u>https://spdbv.vital-it.ch/manual_guide.html</u> ; Autodock tutorials <u>http://autodock.scripps.edu/faqs-help/tutorial</u> ;
otes to textbooks	The discussed slides are available for all the attendees
eaching methods	Talk, round tables, PC simulation
ssessment methods ral, written, ongoing sessment)	Oral presentation of the proper own project about protein functional characterization developed along the course
aluation criteria (describe iteria for each of the above pected outcomes)	Students have to show the acquired skills in planning a project for answering a biological problem concerning the involvement of a protein of unknown function/structure by using computational approaches. Students have also to show their abilities in evaluating results of their computational analyses/predictions and to plan their validation in <i>in vitro/in vivo assays</i> . For showing the acquired skills the attendees will prepare a report in the form of a scientific paper to be discussed by preparing a ppt presentation.
	presentation.