General Information	MASTER DEGREE IN BIOTECHNOLOGIES
Title of the subject	DRUG DESIGN AND DEVELOPMENT
Degree Course (class)	Industrial and Environmental Biotechnology (LM-8)
ECTS credits	6
Compulsory attendance	yes
Language	italian
Academic year	2020-2021

Subject Teacher				
Name and Surname	Orazio Nicolotti	Orazio Nicolotti		
email address	orazio.nicolotti@uniba.it	orazio.nicolotti@uniba.it		
Place and time of reception	by	by email		
ECTS credits details	Discipline sector (SSD)	Area		
	CHIM/08	Chemistry		

Study plan schedule	Year of study plan		Semester I	
Time management	Lessons	Laboratory	Exercises	Total
CFU	5	, ,		6
Total hours	125	25		150
In-class study hours	40	12		52
Out-of-class study hours	85	13		98

Syllabus

Prerequisites / Requirements

Expected learning outcomes (according to Dublin descriptors)		
Knowledge and understanding	Learning about main methods for the design of molecules of pharmacological or diagnostic interest.	
Applying knowledge	Use of specific methodologies and technological platforms (molecular modeling) for the identification of molecular targets of biotechnological interest.	
Making informed judgments and choices	Informed evaluation and interpretation of experimental data.	
Communicating knowledge	Skills to analyze, propose and critically discuss the data with general audience.	

Capacities	to	continue	learning
------------	----	----------	----------

	Study Program
Content	Fundamental interactions between molecules. Van der Waals forces. Hydrophobic effect. Ionic interactions. Dipolar interactions. ID, 2D and 3D molecular descriptors. Quantitative Structure-Activity / Property Relationship. ID, 2D and 3D molecular representation. Database searching. Similarity and molecular diversity. Principal component analysis, cluster analysis, genetic algorithms, multi- objective optimization techniques. Experimental design. Applicability domani. Basic of predictive toxicology. Pharmacophore models. QSAR models. Hansch equation. Free-Wilson equation. Craig Plot, CoMFA, GRID. Molecular mechanics. Conformational Analysis. Three-dimensional structure of proteins and active site. Protein Data Bank, Protein-Molecule Interaction, Molecular Docking. Molecular dynamics. De novo design. Virtual screening.
Bibliography and textbooks	 R. Leach, Molecular Modelling: Principles and Applications, Pearson Education EMA Graham L. Patrick; Introduzione alla Chimica farmaceutica (EdiSES) Gasco, Gualtieri, Melchiorre: Chimica Farmaceutica (Casa Editrice Ambrosiana)
Notes to textbooks	
Teaching methods	
Assessment methods	
(oral, written, ongoing assessment)	
Evaluation criteria (describe criteria for each of the above expected outcomes)	Knowledge of the basic methods for the design of molecules of pharmacological or diagnostic interest. Use of programs for molecular modeling. Critical evaluation of experimental results.
Further information	