General Information	
	BACELOR DEGREE IN BIOTECHONOLOGIES
Title of the subject	Physiology and elements of Biophysics
Degree Course (class)	INDUSTRIAL AND AGRI-FOOD BIOTECHNOLOGIES (Class L-2)
ECTS credits	8
Compulsory attendance	yes
Language	Italian
Academic year	2020/2021

Subject Teacher			
Name and Surname	Grazia Tamma		
email address	grazia.tamma@uniba.it		
Place and time of reception	Biology building, 4th floor, room 48		
ECTS credits details	Discipline sector (SSD)	Area	
	BIO/09	Characterizing activities	

Study plan schedule	Year of study plan		Semester	
	II		1	
Time management	Lessons	Laboratory	Exercises	Total
CFU	6	2		8
Total hours	150	50		200
In-class study hours	48	24		72
Out-of-class study hours	102	26		128

Syllabus

Prerequisites / Requirements

Expected learning outcomes (accord	ding to Dublin descriptors)
------------------------------------	-----------------------------

Knowledge and understanding	Acquisition of basic knowledge of the biophysical, molecular and
	functional mechanisms of transport and communication systems
	across plasma membranes. Understanding the homeostatic
	mechanisms of organisms at the molecular, cellular and systemic level.
	Understanding and application of general physiological mechanisms in
	living organisms. Acquisition of knowledge of the principles of
	electrophysiology.
Applying knowledge	Application of physiological methodologies for research in cellular and
	molecular physiology.
Making informed judgments and	Acquisition of autonomy in experimental planning and in the
choices	strategies needed to apply physiological techniques in order to

	investigate molecular and cellular physiology
Communicating knowledge	Acquisition the correct scientific terminology in order to
	autonomously understand and interpret the scientific bibliography in
	the field of physiology
Capacities to continue learning	Acquisition of the ability to understand the texts and scientific
	literature in the field of physiological disciplines
	Study Program
Content	First part -
	Principles of cellular physiology and cell biophysics. Functional
	organization of the cell - Cellular and extracellular environment
	structure of membranes. Linids Proteins and Carbohydrates Eluid
	mosaic model. Membrane domains: lipid-raft. Recombinant DNA
	technology for the study of membrane proteins. Transmembrane
	transport mechanisms Membrane permeation. Acting forces:
	chemical, electrical and electrochemical potential. Fick's law. Osmosis
	and osmotic balance. Simple diffusion. Facilitated diffusion. Transport
	transports. ABC transporters and drug resistance. Cystic fibrosis:
	pathology associated with alterations of the CFTR channel.
	Transepithelial transport; Aquaporins. Vesicular transport
	mechanisms. Biogenesis of vesicles. Transport mediated by vesicles
	(exocytosis, endocytosis, transcytosis and kiss and run). Protein
	mechanism: pathological implications. Physiological and biophysical
	approaches for the study of vesicular traffic.
	Second part -
	Electrophysiology lon equilibria and membrane potential
	Electrochemical potential. Equilibrium potential and Nernst's law.
	Gibbs-Donnan equilibrium. Dinusion potential. Henderson's law.
	Excitability Electrical properties of the membrane. Graduated
	potentials. Ionic basis of the action potential. Phases and ionic theory
	of action potential. Voltage dependent channels. Action potentials in
	nerve, skeletal muscle and heart cells. Propagation of action potential.
	Canalopathies. Salting conduct. Electromechanical coupling in
	chemical synapses. Inhibitory chemical synapses. Excitatory
	Neurotransmitters: classification, chemical nature and pharmacology.
	Modulation of synaptic activity. Drugs for the study of synapses.
	Recombinant DNA technology for the study of some synapses. The
	role of the calcium ion in the release of neurotransmitters. SNARE
	Proteins. Part Three -
	Signal transduction Signal transduction Membrane receptors and
	cellular messengers. Principles of communication between cells: via
	paracrine, endocrine and autocrine. Second and third messengers.
	Hormones, classification, control of their release, mechanisms of
	action. Biotechnological approaches for the study and synthesis of
	factors and mechanism of action and biotechnological applications
	Fourth part -
	The immune system Cell-mediated antibody responses

Bibliography and textbooks	Cell Physiology and Biophysics - Taglietti Casella (Edises) Physiology -
	Bern & Levy (Ambrosiana Publishing House) Physiology - D'Angelo &
	Peres (Edi Ermes)
Notes to textbooks	The recommended texts must be integrated with other material
	suggested by the Professor during the lessons
Teaching methods	Lectures with the use of PowerPoint and laboratory exercises
Assessment methods	Oral interview
(oral, written, ongoing assessment)	
Evaluation criteria (describe	The exam will be used to verify the acquisition of the contents of the
criteria for each of the above	discipline and how the topics have been understood and connected to
expected outcomes)	each other.In addition, the ability to integrate physiology with other
	biological disciplines will be verified, a capacity particularly
	appreciated for the purposes of an evaluation very high
Further information	