General Information	
	BACELOR DEGREE IN BIOTECHONOLOGIES
Title of the subject	Molecular Genetics and Genetic Engineering
Degree Course (class)	Industrial and Agro-Food Biotechnologies
ECTS credits	8
Compulsory attendance	YES
Language	ITALIAN
Academic year	2020/2021

Subject Teacher			
Name and Surname	René Massimiliano Marsano		
email address	renemassimiliano.marsano@uniba.it		
Place and time of reception	Department of Biology, room 40 third floor		
	Every day by en	nail appointment	
ECTS credits details	Discipline sector (SSD)	Area	
	BIO/18		

Study plan schedule	Year of study plan		Semester	
	THIRD FIRS		ST	
Time management	Lessons	Laboratory	Exercises	Total
CFU	6	2		8
Total hours	150	50		200
In-class study hours	48	24		72
Out-of-class study hours	102	26		128
	•	· ·		

Syllabus

Prerequisites / Requirements

Basic concepts of Genetics and Molecular Biology are required			
Expected learning outcomes (according to Dublin descriptors)			
Knowledge and understanding	Acquisition of adequate knowledge of molecular genetics and genetic		
	engineering, aimed at manipulating biological systems and producing		
	molecules of biotechnological interest.		
Applying knowledge	The laboratory activity will enable students to select and use genetic engineering and molecular analysis techniques with the aim to study systems and components of biotechnological interest in the field of fundamental and industrial research.		
Making informed judgments and choices	Students should be able to interpret and evaluate experimental data autonomously, and to set strategies aimed to study and functionally modify genes and genomes.		
Communicating knowledge	Students should develop the ability to describe complex genetic		

	phenomena in a clear and concise way.			
Capacities to continue learning	Students acquire the ability to investigate aided by the critical reading			
	of scientific reports, texts and online databases.			
Study Program				
Content	GENOME'S STRUCTURE			
	Heterochromatin and euchromatin Centromeres and telomeres			
	Genomic complexity and C value paradox. Single copy sequences and			
	repeated sequences. Mobile DNA sequences in the genome.			
	Classification. Mechanisms of transposition in eukaryotes and			
	genetics and genetic engineering. The P transposable elements of			
	Drosophila and the hybrids dysgenesis. Transposable elements as			
	mutagenesis tools. P-element mediated germline transformation and			
	selection of transgenic individuals. Genetic screening by insertional			
	mutagenesis performed with P elements. Engineered P elements.			
	Enhancer-trap lines. Other transposition systems of biotechnological			
	interest: Sleeping Beauty and piggyBac.			
	TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL CONTROL OF			
	Lac operon as a transcription paradigm in prokaryotes: Jacob			
	and Monod experiments. Control Elements in the eukarvotic			
	genes expression process. Promoters, enhancers, silencers.			
	insulators: isolation and characterization strategies. Post			
	transcriptional regulation; splicing and alternative splicing;			
	editing. RNA interference: origin and function of miRNAs and			
	siRNAs. Chromatin and chromosomes; chromatin structure and			
	gene regulation, epigenetic effects.			
	Use of regulatory sequences in genetic engineering.			
	Ectopic expression systems: Gal4-UAS			
	GENETIC ENGINEERING			
	Cioning vectors (plasmid vectors, phage vectors,			
	High-capacity vectors, cosmus, BACs, PACs, expression vectors).			
	cerevisiae tools and methods. Cloning in Saccharomices			
	cerevisiae; veast replicative plasmids, veast artificial			
	chromosomes: construction of plasmids by homologous			
	recombination in yeast; gene targeting and gene			
	transplacement.			
	Molecular hybridization: principles and methods; Southern blot,			
	Northern blot, colony hybridization, Fluorescent in situ			
	hybridization (FISH). Genomic DNA libraries in high-capacity			
	vectors; Library screening strategies.			
	Gene expression methods, cDNA collections screening; 5 'and 3'			
	RACE. Microarrays, qRT-PCR, RNAseq.			
	Strategies and vectors used in gene transfer.			
	Site specific mutagenesis in vitro. Genome editing: ZNFs,			
	TALENS, URISPR / UAS SYSTEMS.			

	MOLECULAR GENETICS IN APPLIED BIOTECHNOLOGIES. Some examples, taken from the most modern scientific literature, concerning the genetic engineering methods applied in environmental and industrial biotechnologies are discussed. LABORATORY Drosophila as a model organism in Genetics Preparation of polythene chromosomes from Drosophila salivary glands Microinjection in embryos and adults of Drosophila Behavioral tests in Drosophila. Use of online resources for molecular genetics
Bibliography and textbooks	Genetica Principi di analisi formale Griffiths, Zanichelli
Notes to textbooks	ANALISI GENETICA AVANZATA, MEINEELT, MCGRAW-HILL
Teaching methods	Lessons and practice sessions
Assessment methods	Oral exam
(oral, written, ongoing assessment)	
Evaluation criteria (describe	Besides the assessment of the notions' acquisition, the student's
criteria for each of the above	ability to integrate them in the explanation of phenomena of interest
expected outcomes)	15 45553554.
Further information	

-